867 resultados para Langmuir


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Whilst there is a large body of evidence looking at the design of cationic liposomes as transfection agents, correlates of formulation to function remain elusive. In this research, we investigate if lipid packaging can give further insights into transfection efficacy. DNA lipoplexes composed of 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) or 1,2-distearoyl-sn-glycero-3-phosphoethanolamine (DSPE) in combination with 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) or 1,2-stearoyl-3-trimethylammonium-propane (DSTAP) were prepared by the lipid hydration method. Each of the formulations was prepared by hydration in dH2O or phosphate buffer saline (PBS) to investigate the effect of buffer salts on lipoplex physicochemical characteristics and in vitro transfection. In addition, Langmuir monolayer studies were performed to investigate any possible correlation between lipid packaging and liposome attributes. Using PBS, rather than dH2O, to prepare the lipoplexes increased the size of vesicles in most of formulations and resulted in variation in transfection efficacies. However, one combination of lipids (DSPE:DOTAP) could not form liposomes in PBS, whilst the DSPE:DSTAP combination could not form liposomes in either aqueous media. Monolayer studies demonstrated saturated lipid combinations offered dramatically closer molecular packing compared to the other combinations which could suggest why this lipid combination could not form vesicles. Of the lipoplexes prepared, those formulated with DSTAP showed higher transfection efficacy, however, the effect of buffer on transfection efficiency was formulation dependent. © 2011 by the authors; licensee MDPI, Basel, Switzerland.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this research was to investigate the molecular interactions occurring in the formulation of non-ionic surfactant based vesicles composed monopalmitoyl glycerol (MPG), cholesterol (Chol) and dicetyl phosphate (DCP). In the formulation of these vesicles, the thermodynamic attributes and surfactant interactions based on molecular dynamics, Langmuir monolayer studies, differential scanning calorimetry (DSC), hot stage microscopy and thermogravimetric analysis (TGA) were investigated. Initially the melting points of the components individually, and combined at a 5:4:1 MPG:Chol:DCP weight ratio, were investigated; the results show that lower (90 C) than previously reported (120-140 C) temperatures could be adopted to produce molten surfactants for the production of niosomes. This was advantageous for surfactant stability; whilst TGA studies show that the individual components were stable to above 200 C, the 5:4:1 MPG:Chol:DCP mixture show ∼2% surfactant degradation at 140 C, compared to 0.01% was measured at 90 C. Niosomes formed at this lower temperature offered comparable characteristics to vesicles prepared using higher temperatures commonly reported in literature. In the formation of niosome vesicles, cholesterol also played a key role. Langmuir monolayer studies demonstrated that intercalation of cholesterol in the monolayer did not occur in the MPG:Chol:DCP (5:4:1 weight ratio) mixture. This suggests cholesterol may support bilayer assembly, with molecular simulation studies also demonstrating that vesicles cannot be built without the addition of cholesterol, with higher concentrations of cholesterol (5:4:1 vs 5:2:1, MPG:Chol:DCP) decreasing the time required for niosome assembly. © 2013 Elsevier B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Liposomes are well recognised for their ability to improve the delivery of a range of drugs. More commonly they are applied for the delivery of water-soluble drugs, but given their structural attributes, they can also be employed as solubilising agents for low solubility drugs as well as drug targeting agents. To further explore the potential of liposomes as solubilising agents, we have investigated the role of bilayer packaging in promoting drug solubilisation in liposome bilayers. The effect of alkyl chain length and symmetry was investigated to consider if using 'mis-matched' phospholipids could create 'voids' within the bilayers, and enhance bilayer loading capacity. Lipid packing was investigated using Langmuir studies, which demonstrated that increasing the alkyl chain length enhanced lipid packing, with condensed monolayers forming, whilst asymmetric lipids formed less condensed monolayers. However, this more open packing did not translate into improved drug loading, with the longer chain, condensed bilayers formed from long-chain, saturated lipids offering higher drug loading capacity. These studies demonstrate that liposomes formulated from longer chain, saturated lipids offer enhanced solubilisation capacity. However the molecular size, rather than lipophilicity, of the drug to be incorporated was also a key factor dominating bilayer incorporation efficiency. © 2012 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The heterogeneously catalyzed transesterification reaction for the production of biodiesel from triglycerides was investigated for reaction mechanism and kinetic constants. Three elementary reaction mechanisms Eley-Rideal (ER), Langmuir-Hinshelwood-Hougen-Watson (LHHW), and Hattori with assumptions, such as quasi-steady-state conditions for the surface species and methanol adsorption, and surface reactions as the rate-determining steps were applied to predict the catalyst surface coverage and the bulk concentration using a multiscale simulation framework. The rate expression based on methanol adsorption as the rate limiting in LHHW elementary mechanism has been found to be statistically the most reliable representation of the experimental data using hydrotalcite catalyst with different formulations. © 2011 American Chemical Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Advancing (θA) and receding (θR) contact angles were measured with several probe liquids on the external facets (201), (001), (011), and (110) of macroscopic form I paracetamol crystals as well as the cleaved (internal) facet (010). For the external crystal facets, dispersive surface energies γd calculated from the contact angles were found to be similar (34 ± 1 mJ/m2), while the polar components varied significantly. Cleaving the crystals exposed a more apolar (010) surface with very different surface properties, including γd = 45 ± 1 mJ/m2. The relative surface polarity (γp/γ) of the facets in decreasing order was (001) > (011) > (201) > (110) > (010), which agreed with the fraction of exposed polar hydroxyl groups as determined from C and O 1s X-ray photoelectron spectroscopy (XPS) spectra, and could be correlated with the number of non-hydrogen-bonded hydroxyl groups per unit area present for each crystal facet, based on the known crystal structures. In conclusion, all facets of form I paracetamol crystals examined exhibited anisotropic wetting behavior and surface energetics that correlated to the presence of surface hydroxyl groups.  © 2006 American Chemical Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two series of novel modified silicas have been prepared in which individual dendritic branches have been attached to aminopropylsilica using standard peptide coupling methodology. The dendritic branches are composed of enantiomerically pure l-lysine building blocks, and hence, the modified silicas have the potential to act as chiral stationary phases in chromatography. In one series of modified silicas, the surface of the dendritic branch consists of Boc carbamate groups, whereas the other has benzoyl amide surface groups. Different coupling reagents have been investigated in order to maximize the loading onto the solid phase. The new supported dendritic materials have been fully characterized with properties of the bulk material determined by elemental analysis, 13C NMR, and IR spectroscopy, whereas XPS provides important information about the surface of the modified silica exposed to the incident X-rays, the key region in which potential chromatographic performance of these materials will take place. Although the bulk analyses indicate that loading of the dendritic branch onto silica decreases with increasing dendritic generation (and consequently steric bulk), XPS indicates that the optimum surface coverage is actually obtained at the second generation of dendritic growth.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report on a novel experimental study of a pH-responsive polyelectrolyte brush at the silicon/D2O interface. A poly[2-(diethylamino)ethyl methacrylate] brush was grown on a large silicon crystal which acted as both a substrate for a neutron reflectivity solid/liquid experiment but also as an FTIR-ATR spectroscopy crystal. This arrangement has allowed for both neutron reflectivities and FTIR spectroscopic information to be measured in parallel. The chosen polybase brush shows strong IR bands which can be assigned to the N-D+ stretch, D2O, and a carbonyl group. From such FTIR data, we are able to closely monitor the degree of protonation along the polymer chain as well as revealing information concerning the D2O concentration at the interface. The neutron reflectivity data allows us to determine the physical brush profile normal to the solid/liquid interface along with the corresponding degree of hydration. This combined approach makes it possible to quantify the charge on a polymer brush alongside the morphology adopted by the polymer chains. © 2013 American Chemical Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hierarchical nanowires (HNWs) exhibit unique properties and have wide applications, while often suffering from imperfect structure. Herein, we report a facile strategy toward ultrathin CdS HNWs with monocrystal structure, where a continuous-wave (CW) Nd:YAG laser is employed to irradiate an oleic acid (OA) solution containing precursors and a light absorber. The high heating rate and large temperature gradient generated by the CW laser lead to the rapid formation of tiny zinc-blende CdS nanocrystals which then line up into nanowires with the help of OA molecules. Next, the nanowires experience a phase transformation from zinc-blende to wurtzite structure, and the transformation-induced stress creates terraces on their surface, which promotes the growth of side branches and eventually results in monocrystal HNWs with an ultrathin diameter of 24 nm. The one-step synthesis of HNWs is conducted in air and completes in just 40 s, thus being very simple and rapid. The prepared CdS HNWs display photocatalytic performance superior to their nanoparticle counterparts, thus showing promise for catalytic applications in the future.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract Various lubricating body fluids at tissue interfaces are composed mainly of combinations of phospholipids and amphipathic apoproteins. The challenge in producing synthetic replacements for them is not replacing the phospholipid, which is readily available in synthetic form, but replacing the apoprotein component, more specifically, its unique biophysical properties rather than its chemistry. The potential of amphiphilic reactive hypercoiling behaviour of poly(styrene-alt-maleic acid) (PSMA) was studied in combination with two diacylphosphatidylcholines (PC) of different chain lengths in aqueous solution. The surface properties of the mixtures were characterized by conventional Langmuir-Wilhelmy balance (surface pressure under compression) and the du Noüy tensiometer (surface tension of the non-compressed mixtures). Surface tension values and 31P NMR demonstrated that self-assembly of polymer-phospholipid mixtures were pH and concentration-dependent. Finally, the particle size and zeta potential measurements of this self-assembly showed that it can form negatively charged nanosized structures that might find use as drug or lipids release systems on interfaces such as the tear film or lung interfacial layers. The structural reorganization was sensitive to the alkyl chain length of the PC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Poly(styrene-co-maleic anhydride) (PSMA) based copolymers are known to undergo conformational transition in response to environmental stimuli. This smart behaviour makes it possible to mimic the behaviour of native apoproteins. The primary aim of this study was to develop a better understanding of the structure-property relationships of various PSMA-based copolymers sought. The work undertaken in this thesis has revealed that the responsive behaviour of PSMA-based copolymers can be tailored by varying the molecular weight, hydrophobic (styrene) and hydrophilic (maleic acid) balance, and more so in the presence of additional hydrophobic, mono-partial ester moieties. Novel hydrophilic and hydrophobic synthetic surfactant protein analogues have successfully been prepared. These novel lipid solubilising agents possess a broad range of HLB (hydrophilic-lipophilic balance) values that have been estimated. NMR spectroscopy was utilised to confirm the structures for PSMA-based copolymers sought and proved useful in furthering understanding of the structure-property relationships of PSMA-based copolymers. The association of PSMA with the polar phospholipid, 2-dilauryl-sn-glycero-3- phosphocholine (DLPC) produces polymer-lipid complexes analogous to lipoprotein assemblies present in the blood plasma. NMR analysis reveals that the PSMA-based copolymers are not perfectly alternating. Regio-irregular structures, atactic and random monomer sequence distribution have been identified for all materials studied. Novel lipid solubilising agents (polyanionic surfactants) have successfully been synthesised from a broad range of PSMA-based copolymers with desired estimated HLB values that interact with polar phospholipids (DLPC/DPPC) uniquely. Very low static and dynamic surface tensions have been observed via the du Noϋy ring method and Langmuir techniques and correlate well with the estimated HLB values. Synthetic protein-lipid analogues have been successfully synthesised, that mimic the unique surface properties of native biological lubricants without the use of solvents. The novel PSMA-DLPC complexes have successfully been combined with hyaluronan (hyaluronic acid, HA). Today, the employment of HA is economically feasible, because it is readily available from bacterial fermentation processes in a thermally stable form - HyaCare®. The work undertaken in this thesis highlights the usage of HA in biolubrication applications and how this can be optimised and thus justified by carefully selecting the biological source, concentration, molecular weight, purity and most importantly by combining it with compatible boundary lubricating agents (polar phospholipids). Experimental evidence supports the belief that the combined HA and PSMA-DLPC complexes provide a balance of rheological, biotribological and surface properties that are composition dependent, and show competitive advantage as novel synthetic biological lubricants (biosurfactants).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dimethyl methyl phosphonate (DMMP), diethyl methyl phosphonate (DEMP), and fluorophenols undergo rapid decomposition upon TiO$\sb2$ catalyzed photooxidation in air saturated aqueous solution. The degradation rates of DMMP were determined over a range of temperatures, under solar and artificial irradiation with and without simultaneous sonication. Solar illumination is effective for the degradation and the use of low energy of sonication increases the rate of mineralization. The surface area and the type of TiO$\sb2$ dramatically affect the photoactivity of the catalyst. A number of intermediate products are formed and ultimately oxidized to phosphate and carbon dioxide. Possible reaction mechanisms and pathways for DMMP and DEMP are proposed. The Langmuir-Hinshelwood kinetic parameters for the photocatalysis of fluorophenols suggest modestly different reactivity for each isomer. The adsorption constant is largest for the ortho isomer consistent with the adsorption onto TiO$\sb2$ through both hydroxyl and fluoride groups to form a chelated type structure. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Vapor phase carbon adsorption systems are used to remove aromatics, aliphatics, and halogenated hydrocarbons. The adsorption capacity of granular activated carbon is reduced when environmental parameters (temperature, pressure, and humidity) interfere with homogeneous surface diffusion and pore distribution dynamics. The purpose of this study was to investigate the effects of parametric uncertainties in adsorption efficiency. ^ Modified versions of the Langmuir isotherm in conjunction with thermodynamic equations described gaseous adsorption of single component influent onto microporous media. Experimental test results derived from Wang et al. (1999) simulated adsorption kinetics while the Myer and monsoon Langmuir constant accounted for isothermal gas compression and energetic heterogeneity under thermodynamic equilibrium conditions. Responsiveness of adsorption capacity to environmental uncertainties was analyzed by statistical sensitivity and modeled by breakthrough curves. Results indicated that extensive fluctuations in adsorption capacity significantly reduced carbon consumption while isothermal variations had a pronounced effect on saturation capacity. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this research was to demonstrate a high current and stable field emission (FE) source based on carbon nanotubes (CNTs) and electron multiplier microchannel plate (MCP) and design efficient field emitters. In recent years various CNT based FE devices have been demonstrated including field emission displays, x-ray source and many more. However to use CNTs as source in high powered microwave (HPM) devices higher and stable current in the range of few milli-amperes to amperes is required. To achieve such high current we developed a novel technique of introducing a MCP between CNT cathode and anode. MCP is an array of electron multipliers; it operates by avalanche multiplication of secondary electrons, which are generated when electrons strike channel walls of MCP. FE current from CNTs is enhanced due to avalanche multiplication of secondary electrons and in addition MCP also protects CNTs from irreversible damage during vacuum arcing. Conventional MCP is not suitable for this purpose due to the lower secondary emission properties of their materials. To achieve higher and stable currents we have designed and fabricated a unique ceramic MCP consisting of high SEY materials. The MCP was fabricated utilizing optimum design parameters, which include channel dimensions and material properties obtained from charged particle optics (CPO) simulation. Child Langmuir law, which gives the optimum current density from an electron source, was taken into account during the system design and experiments. Each MCP channel consisted of MgO coated CNTs which was chosen from various material systems due to its very high SEY. With MCP inserted between CNT cathode and anode stable and higher emission current was achieved. It was ∼25 times higher than without MCP. A brighter emission image was also evidenced due to enhanced emission current. The obtained results are a significant technological advance and this research holds promise for electron source in new generation lightweight, efficient and compact microwave devices for telecommunications in satellites or space applications. As part of this work novel emitters consisting of multistage geometry with improved FE properties were was also developed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dimethyl methyl phosphonate (DMMP), diethyl methyl phosphonate (DEMP), and fluorophenols undergo rapid decomposition upon TiO2 catalyzed photooxidation in air saturated aqueous solution. The degradation rates of DMMP were determined over a range of temperatures, under solar and artificial irradiation with and without simultaneous sonication. Solar illumination is effective for the degradation and the use of low energy of sonication increases the rate of mineralization. The surface area and the type of TiO2 dramatically affect the photoactivity of the catalyst. A number of intermediate products are formed and ultimately oxidized to phosphate and carbon dioxide. Possible reaction mechanisms and pathways for DMMP and DEMP are proposed. The Langmuir- Hinshelwood kinetic parameters for the photocatalysis of fluorophenols suggest modestly different reactivity for each isomer. The adsorption constant is largest for the ortho isomer consistent with the adsorption onto TiO2 through both hydroxyl and fluoride groups to form a chelated type structure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The process of adsorption and micellization of the surfactants sodium dodecyl sulfate, dodecylammonium chloride and hexaethylene glycol mono-n-dodecyl ether in water-air interface has been studied using measurements of surface tension in aqueous media and NaCl 0.1 mol/L in temperatures of 25, 33 and 40 °C. From these data, critical micelle concentrations and thermodynamic parameters of micellization and adsorption were determined in order to elucidate the behaviors of micellization and adsorption for these surfactants in the proposed medium. For the determination of the thermodynamic parameters of adsorption we utilized the equations of isotherms of Langmuir and Gibbs. Γmáx values determined by the different equations were correlated to the explanation of results. Temperature and salinity were analyzed in terms of their influence on the micellization and adsorption process, and the results were explained based on intermolecular interactions. The values of Gmic have confirmed that the micelle formation for the surfactants studied occurs spontaneously