940 resultados para Lang’s three-dimensional theory


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A nonthermal quantum mechanical statistical fragmentation model based on tunneling of particles through potential barriers is studied in compact two- and three-dimensional systems. It is shown that this fragmentation dynamics gives origin to several static and dynamic scaling relations. The critical exponents are found and compared with those obtained in classical statistical models of fragmentation of general interest, in particular with thermal fragmentation involving classical processes over potential barriers. Besides its general theoretical interest, the fragmentation dynamics discussed here is complementary to classical fragmentation dynamics of interest in chemical kinetics and can be useful in the study of a number of other dynamic processes such as nuclear fragmentation. ©2000 The American Physical Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In three-dimensional trapped Bose-Einstein condensate (BEC), described by the time-dependent Gross-Pitaevskii-Ginzburg equation, we study the effect of initial conditions on stability using a Gaussian variational approach and exact numerical simulations. We also discuss the validity of the criterion for stability suggested by Vakhitov and Kolokolov. The maximum initial chirp (initial focusing defocusing of cloud) that can lead a stable condensate to collapse even before the number of atoms reaches its critical limit is obtained for several specific cases. When we consider two- and three-body nonlinear terms, with negative cubic and positive quintic terms, we have the conditions for the existence of two phases in the condensate. In this case, the magnitude of the oscillations between the two phases are studied considering sufficient large initial chirps. The occurrence of collapse in a BEC with repulsive two-body interaction is also shown to be possible.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Hamiltonian formulation of the teleparallel equivalent of general relativity is considered. Definitions of energy, momentum and angular momentum of the gravitational field arise from the integral form of the constraint equations of the theory. In particular, the gravitational energy-momentum is given by the integral of scalar densities over a three-dimensional spacelike hypersurface. The definition for the gravitational energy is investigated in the context of the Kerr black hole. In the evaluation of the energy contained within the external event horizon of the Kerr black hole, we obtain a value strikingly close to the irreducible mass of the latter. The gravitational angular momentum is evaluated for the gravitational field of a thin, slowly rotating mass shell. © 2002 The American Physical Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We introduce a Skyrme type, four-dimensional Euclidean field theory made of a triplet of scalar fields n→, taking values on the sphere S2, and an additional real scalar field φ, which is dynamical only on a three-dimensional surface embedded in R4. Using a special ansatz we reduce the 4d non-linear equations of motion into linear ordinary differential equations, which lead to the construction of an infinite number of exact soliton solutions with vanishing Euclidean action. The theory possesses a mass scale which fixes the size of the solitons in way which differs from Derrick's scaling arguments. The model may be relevant to the study of the low energy limit of pure SU(2) Yang-Mills theory. © 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We use a time-dependent dynamical mean-field-hydrodynamic model to study mixing-demixing in a degenerate fermion-fermion mixture (DFFM). It is demonstrated that with the increase of interspecies repulsion and/or trapping frequencies, a mixed state of a DFFM could turn into a fully demixed state in both three-dimensional spherically symmetric as well as quasi-one-dimensional configurations. Such a demixed state of a DFFM could be experimentally realized by varying an external magnetic field near a fermion-fermion Feshbach resonance, which will result in an increase of interspecies fermion-fermion repulsion, and/or by increasing the external trap frequencies. © 2006 The American Physical Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we propose a model for the destruction of three-dimensional horseshoes via heterodimensional cycles. This model yields some new dynamical features. Among other things, it provides examples of homoclinic classes properly contained in other classes and it is a model of a new sort of heteroclinic bifurcations we call generating. © 2008 Cambridge University Press.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A challenge in mesonic three-body decays of heavy mesons is to quantify the contribution of re-scattering between the final mesons. D decays have the unique feature that make them a key to light meson spectroscopy, in particular to access the Kn S-wave phase-shifts. We built a relativis-tic three-body model for the final state interaction in D+ → K -π+π+ decay based on the ladder approximation of the Bethe-Salpeter equation projected on the light-front. The decay amplitude is separated in a smooth term, given by the direct partonic decay amplitude, and a three-body fully interacting contribution, that is factorized in the standard two-meson resonant amplitude times a reduced complex amplitude that carries the effect of the three-body rescattering mechanism. The off-shell reduced amplitude is a solution of an inhomogeneous Faddeev type three-dimensional integral equation, that includes only isospin 1/2 K -π+ interaction in the S-wave channel. The elastic K-π+ scattering amplitude is parameterized according to the LASS data[1]. The integral equation is solved numerically and preliminary results are presented and compared to the experimental data from the E791 Collaboration[2, 3] and FOCUS Collaboration[4, 5].

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Motivated by return maps near saddles for three-dimensional flows and also by return maps in the torus associated to Cherry flows, we study gap maps with derivative positive and smaller than one outside the discontinuity point. We prove that the lamination of infinitely renormalizable maps (or else maps with irrational rotation numbers) has analytic leaves in a natural subset of a Banach space of analytic maps of this kind. With maps having Hölder continuous derivative and derivative bounded away from zero, we also prove Hölder continuity of holonomies of the lamination and also of conjugacies between maps having the same combinatorics. © 2011 Springer Basel AG.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Ciência da Informação - FFC

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Matematica Aplicada e Computacional - FCT

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Geografia - IGCE

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O Feixe Gaussiano (FG) é uma solução assintótica da equação da elastodinâmica na vizinhança paraxial de um raio central, a qual se aproxima melhor do campo de ondas do que a aproximação de ordem zero da Teoria do Raio. A regularidade do FG na descrição do campo de ondas, assim como a sua elevada precisão em algumas regiões singulares do meio de propagação, proporciona uma forte alternativa na solução de problemas de modelagem e imageamento sísmicos. Nesta Tese, apresenta-se um novo procedimento de migração sísmica pré-empilhamento em profundidade com amplitudes verdadeiras, que combina a flexibilidade da migração tipo Kirchhoff e a robustez da migração baseada na utilização de Feixes Gaussianos para a representação do campo de ondas. O algoritmo de migração proposto é constituído por dois processos de empilhamento: o primeiro é o empilhamento de feixes (“beam stack”) aplicado a subconjuntos de dados sísmicos multiplicados por uma função peso definida de modo que o operador de empilhamento tenha a mesma forma da integral de superposição de Feixes Gaussianos; o segundo empilhamento corresponde à migração Kirchhoff tendo como entrada os dados resultantes do primeiro empilhamento. Pelo exposto justifica-se a denominação migração Kirchhoff-Gaussian-Beam (KGB). As principais características que diferenciam a migração KGB, durante a realização do primeiro empilhamento, de outros métodos de migração que também utilizam a teoria dos Feixes Gaussianos, são o uso da primeira zona de Fresnel projetada para limitar a largura do feixe e a utilização, no empilhamento do feixe, de uma aproximação de segunda ordem do tempo de trânsito de reflexão. Como exemplos são apresentadas aplicações a dados sintéticos para modelos bidimensionais (2-D) e tridimensionais (3-D), correspondentes aos modelos Marmousi e domo de sal da SEG/EAGE, respectivamente.