930 resultados para Korai mat


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A toxoplasmose, causada pelo Toxoplasma gondii é uma protozoose que acomete o homem e uma grande variedade de animais de sangue quente e aves. No Brasil, a prevalência pode variar de 20% a 90% dependendo da área estudada, clima, condição socioeconômica e cultural. A infecção se dá através da ingestão de oocistos, que podem ser encontrados no solo, água e alimentos ou através da manipulação e ingestão de carne crua ou mal cozida, além da infecção congênita, apresentando importância em saúde pública. Este trabalho objetivou estudar a ocorrência da infecção por Toxoplasma gondii em animais silvestres, bovinos, suínos, ovinos e comunidade rural da região de Nhecolândia, no Pantanal do Mato Grosso do Sul, utilizando métodos sorológicos (Hemaglutinação Indireta - HAI, Reação de Imunofluorescência Indireta - RIFI, Técnica de aglutinação modificada - MAT) e moleculares (Reação em cadeia pela polimerase \2013 PCR, PCR-RFLP). Foram feitas coletas de amostras de sangue de 73 indivíduos da comunidade rural, de 25 cães, 442 bovinos e 148 porco-monteiros. Observou-se que 47,95% (35/73) das pessoas eram sororreagentes. Destas, apenas um indivíduo sororreagente (2,9%) apresentou lesão ocular presumível da infecção pelo parasito. Nos animais, observou-se a ocorrência de anticorpos anti- T. gondii em 48% dos cães, 30,55% dos bovinos e 1,3% nos porco-monteiros. Relatos de várias partes do mundo têm demonstrado a importância do ciclo silvestre na epidemiologia da infecção por Toxoplasma gondii. No entanto, apesar do papel conhecido de alguns felinos selvagens como hospedeiros definitivos para manutenção e transmissão do parasita para outros predadores carnívoros, pouco se sabe sobre a incidência de Toxoplasma gondii nestes animais Os carnívoros foram capturados em armadilhas contendo iscas e após a contenção química as amostras biológicas (sangue de todos os animais e fezes dos felídeos) foram coletadas e armazenadas para análise posterior. No presente estudo, três espécies de carnívoros foram avaliadas: quati (Nasua nasua), lobinho ou cachorro do mato (Cerdocyon thous) e jaguatirica (Leopardus pardalis). Quarenta e dois roedores (Tricomys) também avaliados tiveram análises de PCR realizada em 42 tecidos (cérebro, pulmão e músculo). Através dos exames sorológicos (Hemaglutinação Indireta, Reação de Imunofluorescência Indireta, Técnica de aglutinação modificada) observou-se a ocorrência da infecção por Toxoplasma gondii em 29,16% (7/24) dos quatis, 47,82% (11/23) em lobinhos e 100% (2/2) nas jaguatiricas. No PCR observou-se positividade em 41,66% (10/24) dos quatis, 47,82 % (11/23) dos lobinhos e em 100% (2/2) das jaguatiricas. Em roedores, observou-se 23,80 % (10/42) de positivos pela PCR. Realizamos a caracterização molecular de amostras sanguíneas dos animais silvestres positivos pela PCR, onde utilizamos 12 marcadores genotípicos (SAG1, SAG2 (5\2019-SAG2 e 3\2019-SAG2), SAG3, GRA6, BTUB, c22-8, c29-2, L358, PK1, novo SAG2, Apico, CS3), onde observou-se a presença de um novo genótipo do parasito, circulando na região de forma homogênea entre as espécies

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Toxoplasma gondii é um protozoário parasita que infecta animais de sangue quente, incluindo seres humanos. Pequenos roedores e marsupiais têm papel importante na epidemiologia do T. gondii, pois são fontes de infecção para os felídeos domésticos e selvagens. Amostras de soro de 151 roedores e 48 marsupiais, capturados na Mata Atlântica, Estado de São Paulo, Sudeste do Brasil, foram analisadas para a pesquisa de anticorpos anti-T. gondii. Os anticorpos foram detectados pelo Teste de Aglutinação Modificada (MAT ≥ 25), com 8,6% (13/151) dos roedores e 10,4% (5/48) dos marsupiais soropositivos, com títulos variando de 25 a 6.400 e de 25 a 3.200, respectivamente, para os roedores e os marsupiais. Três das oito espécies de roedores (Akodon spp., Oligoryzomys nigripes e Rattus norvegicus) e uma das quatro espécies de marsupiais (Didelphis aurita) apresentaram animais positivos. A presença de anticorpos anti-T. gondii foi descrita pela primeira vez no roedor Oligoryzomys nigripes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of the present work is to study the occupants' exposure to fine particulate concentrations in ten nightclubs (NCs) in Athens, Greece. Measurements of PM1 and PM 2.5 were made in the outdoor and indoor environment of each NC. The average indoorPM1 andPM 2.5 concentrations were found to be 181.77 μgm−3 and 454.08 μg m−3 respectively, while the corresponding outdoor values were 11.04 μg m−3 and 32.19 μg m−3. Ventilation and resuspension rates were estimated through consecutive numerical experiments with an indoor air quality model and were found to be remarkably lower than the minimum values recommended by national standards. The relative effects of the ventilation and smoking on the occupants' exposures were examined using multiple regression techniques. Itwas found that given the low ventilation rates, the effect of smoking as well as the occupancy is of the highest importance. Numerical evaluations showed that if the ventilation rates were at the minimum values set by national standards, then the indoor exposures would be reduced at the 70% of the present exposure values.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Activities like the Coupled Model Intercomparison Project (CMIP) have revolutionized climate modelling in terms of our ability to compare models and to process information about climate projections and their uncertainties. The evaluation of models against observations is now considered a key component of multi-model studies. While there are a number of outstanding scientific issues surrounding model evaluation, notably the open question of how to link model performance to future projections, here we highlight a specific but growing problem in model evaluation - that of uncertainties in the observational data that are used to evaluate the models. We highlight the problem using an example obtained from studies of the South Asian Monsoon but we believe the problem is a generic one which arises in many different areas of climate model evaluation and which requires some attention by the community.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Palaeodata in synthesis form are needed as benchmarks for the Palaeoclimate Modelling Intercomparison Project (PMIP). Advances since the last synthesis of terrestrial palaeodata from the last glacial maximum (LGM) call for a new evaluation, especially of data from the tropics. Here pollen, plant-macrofossil, lake-level, noble gas (from groundwater) and δ18O (from speleothems) data are compiled for 18±2 ka (14C), 32 °N–33 °S. The reliability of the data was evaluated using explicit criteria and some types of data were re-analysed using consistent methods in order to derive a set of mutually consistent palaeoclimate estimates of mean temperature of the coldest month (MTCO), mean annual temperature (MAT), plant available moisture (PAM) and runoff (P-E). Cold-month temperature (MAT) anomalies from plant data range from −1 to −2 K near sea level in Indonesia and the S Pacific, through −6 to −8 K at many high-elevation sites to −8 to −15 K in S China and the SE USA. MAT anomalies from groundwater or speleothems seem more uniform (−4 to −6 K), but the data are as yet sparse; a clear divergence between MAT and cold-month estimates from the same region is seen only in the SE USA, where cold-air advection is expected to have enhanced cooling in winter. Regression of all cold-month anomalies against site elevation yielded an estimated average cooling of −2.5 to −3 K at modern sea level, increasing to ≈−6 K by 3000 m. However, Neotropical sites showed larger than the average sea-level cooling (−5 to −6 K) and a non-significant elevation effect, whereas W and S Pacific sites showed much less sea-level cooling (−1 K) and a stronger elevation effect. These findings support the inference that tropical sea-surface temperatures (SSTs) were lower than the CLIMAP estimates, but they limit the plausible average tropical sea-surface cooling, and they support the existence of CLIMAP-like geographic patterns in SST anomalies. Trends of PAM and lake levels indicate wet LGM conditions in the W USA, and at the highest elevations, with generally dry conditions elsewhere. These results suggest a colder-than-present ocean surface producing a weaker hydrological cycle, more arid continents, and arguably steeper-than-present terrestrial lapse rates. Such linkages are supported by recent observations on freezing-level height and tropical SSTs; moreover, simulations of “greenhouse” and LGM climates point to several possible feedback processes by which low-level temperature anomalies might be amplified aloft.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Indian monsoon is an important component of Earth's climate system, accurate forecasting of its mean rainfall being essential for regional food and water security. Accurate measurement of the rainfall is essential for various water-related applications, the evaluation of numerical models and detection and attribution of trends, but a variety of different gridded rainfall datasets are available for these purposes. In this study, six gridded rainfall datasets are compared against the India Meteorological Department (IMD) gridded rainfall dataset, chosen as the most representative of the observed system due to its high gauge density. The datasets comprise those based solely on rain gauge observations and those merging rain gauge data with satellite-derived products. Various skill scores and subjective comparisons are carried out for the Indian region during the south-west monsoon season (June to September). Relative biases and skill metrics are documented at all-India and sub-regional scales. In the gauge-based (land-only) category, Asian Precipitation-Highly-Resolved Observational Data Integration Towards Evaluation of water resources (APHRODITE) and Global Precipitation Climatology Center (GPCC) datasets perform better relative to the others in terms of a variety of skill metrics. In the merged category, the Global Precipitation Climatology Project (GPCP) dataset is shown to perform better than the Climate Prediction Center Merged Analysis of Precipitation (CMAP) for the Indian monsoon in terms of various metrics, when compared with the IMD gridded data. Most of the datasets have difficulty in representing rainfall over orographic regions including the Western Ghats mountains, in north-east India and the Himalayan foothills. The wide range of skill scores seen among the datasets and even the change of sign of bias found in some years are causes of concern. This uncertainty between datasets is largest in north-east India. These results will help those studying the Indian monsoon region to select an appropriate dataset depending on their application and focus of research.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The MATLAB model is contained within the compressed folders (versions are available as .zip and .tgz). This model uses MERRA reanalysis data (>34 years available) to estimate the hourly aggregated wind power generation for a predefined (fixed) distribution of wind farms. A ready made example is included for the wind farm distribution of Great Britain, April 2014 ("CF.dat"). This consists of an hourly time series of GB-total capacity factor spanning the period 1980-2013 inclusive. Given the global nature of reanalysis data, the model can be applied to any specified distribution of wind farms in any region of the world. Users are, however, strongly advised to bear in mind the limitations of reanalysis data when using this model/data. This is discussed in our paper: Cannon, Brayshaw, Methven, Coker, Lenaghan. "Using reanalysis data to quantify extreme wind power generation statistics: a 33 year case study in Great Britain". Submitted to Renewable Energy in March, 2014. Additional information about the model is contained in the model code itself, in the accompanying ReadMe file, and on our website: http://www.met.reading.ac.uk/~energymet/data/Cannon2014/

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a simple, generic model of annual tree growth, called "T". This model accepts input from a first-principles light-use efficiency model (the "P" model). The P model provides values for gross primary production (GPP) per unit of absorbed photosynthetically active radiation (PAR). Absorbed PAR is estimated from the current leaf area. GPP is allocated to foliage, transport tissue, and fine-root production and respiration in such a way as to satisfy well-understood dimensional and functional relationships. Our approach thereby integrates two modelling approaches separately developed in the global carbon-cycle and forest-science literature. The T model can represent both ontogenetic effects (the impact of ageing) and the effects of environmental variations and trends (climate and CO2) on growth. Driven by local climate records, the model was applied to simulate ring widths during the period 1958–2006 for multiple trees of Pinus koraiensis from the Changbai Mountains in northeastern China. Each tree was initialised at its actual diameter at the time when local climate records started. The model produces realistic simulations of the interannual variability in ring width for different age cohorts (young, mature, and old). Both the simulations and observations show a significant positive response of tree-ring width to growing-season total photosynthetically active radiation (PAR0) and the ratio of actual to potential evapotranspiration (α), and a significant negative response to mean annual temperature (MAT). The slopes of the simulated and observed relationships with PAR0 and α are similar; the negative response to MAT is underestimated by the model. Comparison of simulations with fixed and changing atmospheric CO2 concentration shows that CO2 fertilisation over the past 50 years is too small to be distinguished in the ring-width data, given ontogenetic trends and interannual variability in climate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Massive economic and population growth, and urbanization are expected to lead to a tripling of anthropogenic emissions in southern West Africa (SWA) between 2000 and 2030. However, the impacts of this on human health, ecosystems, food security, and the regional climate are largely unknown. An integrated assessment is challenging due to (a) a superposition of regional effects with global climate change, (b) a strong dependence on the variable West African monsoon, (c) incomplete scientific understanding of interactions between emissions, clouds, radiation, precipitation, and regional circulations, and (d) a lack of observations. This article provides an overview of the DACCIWA (Dynamics-Aerosol-Chemistry-Cloud Interactions in West Africa) project. DACCIWA will conduct extensive fieldwork in SWA to collect high-quality observations, spanning the entire process chain from surface-based natural and anthropogenic emissions to impacts on health, ecosystems, and climate. Combining the resulting benchmark dataset with a wide range of modeling activities will allow (a) assessment of relevant physical, chemical, and biological processes, (b) improvement of the monitoring of climate and atmospheric composition from space, and (c) development of the next generation of weather and climate models capable of representing coupled cloud-aerosol interactions. The latter will ultimately contribute to reduce uncertainties in climate predictions. DACCIWA collaborates closely with operational centers, international programs, policy-makers, and users to actively guide sustainable future planning for West Africa. It is hoped that some of DACCIWA’s scientific findings and technical developments will be applicable to other monsoon regions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

1. Soil carbon (C) storage is a key ecosystem service. Soil C stocks play a vital role in soil fertility and climate regulation, but the factors that control these stocks at regional and national scales are unknown, particularly when their composition and stability are considered. As a result, their mapping relies on either unreliable proxy measures or laborious direct measurements. 2. Using data from an extensive national survey of English grasslands we show that surface soil (0-7cm) C stocks in size fractions of varying stability can be predicted at both regional and national scales from plant traits and simple measures of soil and climatic conditions. 3. Soil C stocks in the largest pool, of intermediate particle size (50-250 µm), were best explained by mean annual temperature (MAT), soil pH and soil moisture content. The second largest C pool, highly stable physically and biochemically protected particles (0.45-50 µm), was explained by soil pH and the community abundance weighted mean (CWM) leaf nitrogen (N) content, with the highest soil C stocks under N rich vegetation. The C stock in the small active fraction (250-4000 µm) was explained by a wide range of variables: MAT, mean annual precipitation, mean growing season length, soil pH and CWM specific leaf area; stocks were higher under vegetation with thick and/or dense leaves. 4. Testing the models describing these fractions against data from an independent English region indicated moderately strong correlation between predicted and actual values and no systematic bias, with the exception of the active fraction, for which predictions were inaccurate. 5. Synthesis and Applications: Validation indicates that readily available climate, soils and plant survey data can be effective in making local- to landscape-scale (1-100,000 km2) soil C stock predictions. Such predictions are a crucial component of effective management strategies to protect C stocks and enhance soil C sequestration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Regulatory, safety, and environmental issues have prompted the development of aqueousenzymatic extraction (AEE) for extracting components from oil-bearing materials. The emulsion resulting from AEE requires de-emulsification to separate the oil; when enzymes are used for this purpose, the method is known as aqueous enzymatic emulsion de-emulsification (AEED). In general, enzyme assisted oil extraction is known to yield oil having highly favourable characteristics. This review covers technological aspects of enzyme assisted oil extraction, and explores the quality characteristics of the oils obtained,focusing particularly on recent efforts undertaken to improve process economics by recovering and reusing enzymes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We apply the Coexistence Approach (CoA) to reconstruct mean annual precipitation (MAP), mean annual temperature (MAT), mean temperature of thewarmestmonth (MTWA) and mean temperature of the coldest month (MTCO) at 44 pollen sites on the Qinghai–Tibetan Plateau. The modern climate ranges of the taxa are obtained (1) from county-level presence/absence data and (2) from data on the optimum and range of each taxon from Lu et al. (2011). The CoA based on the optimumand range data yields better predictions of observed climate parameters at the pollen sites than that based on the county-level data. The presence of arboreal pollen, most of which is derived fromoutside the region, distorts the reconstructions. More reliable reconstructions are obtained using only the non-arboreal component of the pollen assemblages. The root mean-squared error (RMSE) of the MAP reconstructions are smaller than the RMSE of MAT, MTWA and MTCO, suggesting that precipitation gradients are the most important control of vegetation distribution on the Qinghai–Tibetan Plateau. Our results show that CoA could be used to reconstruct past climates in this region, although in areas characterized by open vegetation the most reliable estimates will be obtained by excluding possible arboreal contaminants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The El Niño/Southern Oscillation (ENSO) is the dominant climate phenomenon affecting extreme weather conditions worldwide. Its response to greenhouse warming has challenged scientists for decades, despite model agreement on projected changes in mean state. Recent studies have provided new insights into the elusive links between changes in ENSO and in the mean state of the Pacific climate. The projected slow-down in Walker circulation is expected to weaken equatorial Pacific Ocean currents, boosting the occurrences of eastward-propagating warm surface anomalies that characterize observed extreme El Niño events. Accelerated equatorial Pacific warming, particularly in the east, is expected to induce extreme rainfall in the eastern equatorial Pacific and extreme equatorward swings of the Pacific convergence zones, both of which are features of extreme El Niño. The frequency of extreme La Niña is also expected to increase in response to more extreme El Niños, an accelerated maritime continent warming and surface-intensified ocean warming. ENSO-related catastrophic weather events are thus likely to occur more frequently with unabated greenhouse-gas emissions. But model biases and recent observed strengthening of the Walker circulation highlight the need for further testing as new models, observations and insights become available.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The El Niño/Southern Oscillation is Earth’s most prominent source of interannual climate variability, alternating irregularly between El Niño and La Niña, and resulting in global disruption of weather patterns, ecosystems, fisheries and agriculture1, 2, 3, 4, 5. The 1998–1999 extreme La Niña event that followed the 1997–1998 extreme El Niño event6 switched extreme El Niño-induced severe droughts to devastating floods in western Pacific countries, and vice versa in the southwestern United States4, 7. During extreme La Niña events, cold sea surface conditions develop in the central Pacific8, 9, creating an enhanced temperature gradient from the Maritime continent to the central Pacific. Recent studies have revealed robust changes in El Niño characteristics in response to simulated future greenhouse warming10, 11, 12, but how La Niña will change remains unclear. Here we present climate modelling evidence, from simulations conducted for the Coupled Model Intercomparison Project phase 5 (ref. 13), for a near doubling in the frequency of future extreme La Niña events, from one in every 23 years to one in every 13 years. This occurs because projected faster mean warming of the Maritime continent than the central Pacific, enhanced upper ocean vertical temperature gradients, and increased frequency of extreme El Niño events are conducive to development of the extreme La Niña events. Approximately 75% of the increase occurs in years following extreme El Niño events, thus projecting more frequent swings between opposite extremes from one year to the next.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El Niño events are a prominent feature of climate variability with global climatic impacts. The 1997/98 episode, often referred to as ‘the climate event of the twentieth century’1, 2, and the 1982/83 extreme El Niño3, featured a pronounced eastward extension of the west Pacific warm pool and development of atmospheric convection, and hence a huge rainfall increase, in the usually cold and dry equatorial eastern Pacific. Such a massive reorganization of atmospheric convection, which we define as an extreme El Niño, severely disrupted global weather patterns, affecting ecosystems4, 5, agriculture6, tropical cyclones, drought, bushfires, floods and other extreme weather events worldwide3, 7, 8, 9. Potential future changes in such extreme El Niño occurrences could have profound socio-economic consequences. Here we present climate modelling evidence for a doubling in the occurrences in the future in response to greenhouse warming. We estimate the change by aggregating results from climate models in the Coupled Model Intercomparison Project phases 3 (CMIP3; ref. 10) and 5 (CMIP5; ref. 11) multi-model databases, and a perturbed physics ensemble12. The increased frequency arises from a projected surface warming over the eastern equatorial Pacific that occurs faster than in the surrounding ocean waters13, 14, facilitating more occurrences of atmospheric convection in the eastern equatorial region.