981 resultados para Iron metabolism
Resumo:
Journal Article
Resumo:
Fifty-one in vivo characterized autonomous single adenomas have been studied for functional parameters in vitro, for gene and protein expression and for pathology, and have been systematically compared to the corresponding extratumoral quiescent tissue. The adenomas were characterized by a high level of iodide trapping that corresponds to a high level of Na+ /iodide symporter gene expression, a high thyroperoxidase mRNA and protein content, and a low H2O2 generation. This explains the iodide metabolism characteristics demonstrated before, ie, the main cause of the "hot" character of the adenomas is their increased iodide transport. The adenomas spontaneously secreted higher amounts of thyroid hormone than the quiescent tissue and in agreement with previous in vivo data, this secretion could be further enhanced by thyrotropin (TSH). Inositol uptake was also increased but there was no spontaneous increase of the generation of inositol phosphates and this metabolism could be further activated by TSH. These positive responses to TSH are in agreement with the properties of TSH-stimulated thyroid cells in vitro and in vivo. They are compatible with the characteristics of mutated TSH receptors whose constitutive activation accounts for the majority of autonomous thyroid adenomas in Europe. The number of cycling cells, as evaluated by MIB-1 immunolabeling was low but increased in comparison with the corresponding quiescent tissue or normal tissue. The cycling cells are observed mainly at the periphery; there was very little apoptosis. Both findings account for the slow growth of these established adenomas. On the other hand, by thyroperoxidase immunohistochemistry, the whole lesion appeared hyperfunctional, which demonstrates a dissociation of mitogenic and functional stimulations. Thyroglobulin, TSH receptor, and E-cadherin mRNA accumulations were not modified in a consistent way, which confirms the near-constitutive expression of the corresponding genes in normal differentiated tissue. On the contrary, early immediate genes expressions (c-myc, NGF1B, egr 1, genes of the fos and jun families) were decreased. This may be explained by the proliferative heterogeneity of the lesion and the previously described short, biphasic expression of these genes when induced by mitogenic agents. All the characteristics of the autonomous adenomas can therefore be explained by the effect of the known activating mutations of genes coding for proteins of the TSH cyclic adenosine monophosphate (cAMP) cascade, all cells being functionally activated while only those at the periphery multiply. The reason of this heterogeneity is unknown.
Resumo:
Mathematical models of straight-grate pellet induration processes have been developed and carefully validated by a number of workers over the past two decades. However, the subsequent exploitation of these models in process optimization is less clear, but obviously requires a sound understanding of how the key factors control the operation. In this article, we show how a thermokinetic model of pellet induration, validated against operating data from one of the Iron Ore Company of Canada (IOCC) lines in Canada, can be exploited in process optimization from the perspective of fuel efficiency, production rate, and product quality. Most existing processes are restricted in the options available for process optimization. Here, we review the role of each of the drying (D), preheating (PH), firing (F), after-firing (AF), and cooling (C) phases of the induration process. We then use the induration process model to evaluate whether the first drying zone is best to use on the up- or down-draft gas-flow stream, and we optimize the on-gas temperature profile in the hood of the PH, F, and AF zones, to reduce the burner fuel by at least 10 pct over the long term. Finally, we consider how efficient and flexible the process could be if some of the structural constraints were removed (i.e., addressed at the design stage). The analysis suggests it should be possible to reduce the burner fuel lead by 35 pct, easily increase production by 5+ pct, and improve pellet quality.
Resumo:
The micromagnetic structure and energy of 180° domain walls spanning laminar crystals of iron having (100) or (110) surfaces and ranging in thickness from 145 to 580 nm have been investigated by numerical integration of the Landau-Lifshitz-Gilbert equation. Stable equilibrium structures with two flux symmetries were obtained for both crystal orientations at all thicknesses studied.
Computational fluid dynamics: advancements in technology for modeling iron and steelmaking processes
Resumo:
Computational fluid dynamics (CFD) software technology has formed the basis of many investigations into the behavior and optimization of primary iron and steelmaking processes for the last 25+ years. The objective of this contribution is to review the progress in CFD technologies over the last decade or so and how this can be brought to bear in advancing the process analysis capability of primary ferrous operations. In particular, progress on key challenges such as compute performance, fluid-structure transformation and interaction, and increasingly complex geometries are highlighted.
Resumo:
RATIONALE & OBJECTIVES: The food multimix (FFM)concept states that limited food resources can be combined using scientific knowledge to meet nutrient needs of vulnerable groups at low cost utilizing the ‘nutrient strengths’ of individual or candidate foods in composite recipes within a cultural context. METHODS: The method employed the food-to-food approach for recipe development using traditional food ingredients. Recipes were subjected to proximate and micronutrient analysis and optimized to meet at tleast 40% of recommended daily intakes. End products including breads, porridge and soup were developed. RESULTS: FMM products were employed in a feeding trial among 120 healthy pregnant women in Gauteng, South Africa resulting in improvements in serum iron levels from baseline values of 14.59 (=/-7.67) umol/L and 14.02 (=/-8.13) umol/L for control and intervention groups (p=0.71), to 16.03 (=/-5.67) umol/L and 18.66 (=/-9.41) umol/L (p=0.19). The increases from baseline to post-intervention were however statistically significant within groups. Similarly Mean Cell Volume values improved from baseline as well as serum ferritin and transferritin levels. CONCLUSION: The FMM concept has potential value in feeding programs for vulnerable groups including pregnant and lactating mothers.
Resumo:
A new series of iron(III) complexes [Fe(L(1))(HL(1))], [Fe(L(1)) Cl]; [H2L(1) = N'-(2-methoxythiobenzoyl)pyridine-2-carbohydrazide], [Fe(L(2))(acac)], [Fe(HL(2))2 Cl]; [H2L(2) = N'-(4-methoxythiobenzoyl)pyridine-2-carbohydrazide] and [Fe(L(3)) (acac)]; [H2L(3) = N'-(2-hydroxythiobenzoyl)pyridine-2-carbohydrazide] were prepared by stirring/refluxing/mixing the respective ligand with FeCl3/Fe(acac)3 in chloroform/methanol. All the compounds were characterized by elemental analyses, magnetic susceptibility, IR, UV and Mossbauer spectral data. The complexes high/low spin state and have tetrahedral/octahedral geometry.