917 resultados para Ionization Mass-spectrometry
Resumo:
Coordination-driven self-assembly of binuclear half-sandwich p-cymene ruthenium(II) complexes [Ru-2(mu-eta(4)-C2O4)(MeOH)(2)(eta(6)-p-cymene)(2)](O3SCF3)(2) (1a) or [Ru-2(mu-eta(4)-N,N'-diphenyloxamidato)(MeOH)(2)(eta(6)-p-cymene)(2)]( O3SCF3)(2) (1b) separately with an imidazole-based tetratopic donor L in methanol affords two tetranuclear metallamacrocycles 2a and 2b, respectively. Conversely, the similar combination of L with 2,5-dihydroxy-1,4-benzoquinonato (dhbq) bridged binuclear complex [Ru-2(mu-eta(C6H2O4)-C-4)(MeOH)(2)(eta(6)-p-cymene)(2)](O3SCF3)(2) (1c) in 1:2 molar ratio resulted in an octanuclear macrocyclic cage 2c. All the self-assembled macrocycles 2a-2c were isolated as their triflate salts in high yields and were characterized fully by multinuclear (H-1, C-13 and F-19) NMR, infrared (IR) and electrospray ionization mass spectrometry (ESIMS). In addition, the molecular structure of macrocycle 2a was established unequivocally by single-crystal X-ray diffraction analysis and adopts a tetranuclear rectangular geometry with the dimensions of 5.53 angstrom x 12.39 angstrom. Furthermore, the photo-and electrochemical properties of these newly synthesized assemblies have been studied by using UV-vis absorption and cyclic voltammetry analysis.
Resumo:
A new carbazole-based 90 degrees dipyridyl donor 3,6-di(4-pyridylethynyl)carbazole (L) containing carbazole-ethynyl functionality is synthesized in reasonable yield using the Sonagashira coupling reaction. Multinuclear NMR, electrospray ionization-mass spectrometry (ESI-MS), including single crystal X-ray diffraction analysis characterized this 90 degrees building unit. The stoichiometry combination of L with several Pd(II)/Pt(II)-based 90 degrees acceptors (1a-1d) yielded 2 + 2] self-assembled metallacycles (2a-2d) under mild conditions in quantitative yields 1a = cis-(dppf)Pd(OTf)(2); 1b = cis-(dppf)Pt(OTf)(2); 1c = cis-(tmen)Pd(NO3)(2); 1d = 3,6-bis{trans-Pt(C C) (PEt3)(2)(NO3))carbazole]. All these macrocycles were characterized by various spectroscopic techniques, and the molecular structure of 2a was unambiguously determined by single crystal X-ray diffraction analysis. Incorporation of ethynyl functionality to the carbazole backbone causes the resulted macrocycles (2a-2d) to be pi-electron rich and thereby exhibit strong emission characteristics. The macrocycle 2a has a large internal concave aromatic surface. The fluorescence quenching study suggests that 2a forms a similar to 1:1 complex with C-60 with a high association constant of K-sv = 1.0 X 10(5) M-1.
Resumo:
Equimolar combination of a series of binuclear half-sandwich p-cymene ruthenium(II) building units Ru-2(mu-eta(4)-C2O4)(MeOH)(2)(eta(6)-p-cymene)(2)](OTf)(2) 1a](OTf)(2), Ru-2(mu-eta(4)-N,N'-diphenyloxamidato)( MeOH)(2)(eta(6)-p-cymene)(2)](OTf)(2) 1b](OTf)(2) and Ru-2(mu-eta(4)-C6H2O4)(MeOH)(2)(eta(6)-p-cymene)(2)](OTf)(2) 1c](OTf)(2) separately with imidazole-based ditopic ligands (L-1-L-2) in methanol yielded a series of tetranuclear metallamacrocycles 2-7](OTf)(4), respectively L-1 = 1,4-bis(imidazole-1-yl)benzene; L-2 = 4,4'-bis(imidazole-1-yl)biphenyl; OTf- = O3SCF3-]. Similarly, the reaction of Ru-2(mu-eta(4)-C2O4)(MeOH)(2)(eta(6)-p-cymene)2](OTf)(2) 1a](OTf)(2) with a triazine-based tritopic ligand 1,3,5-tris(imidazole-1-yl) triazine (L3) in 3: 2 M ratio afforded an unexpected tetranuclear macrocycle 8](OTf)(4) instead of an expected trigonal prismatic cage 8a](OTf)(6). All the self-assembled macrocycles 2-8](OTf)(4) were isolated in moderate to high yields and were fully characterized by multinuclear H-1, F-19] NMR, IR and electrospray ionization mass spectrometry (ESI-MS). In addition, X-ray diffraction study on the single crystals of 3](OTf)(4) and 8](OTf)(4) also indicated the formation 2 + 2] self-assembled macrocycles. Despite the possibility of formation of different conformational isomeric macrocycles (syn-and anti) and polymeric product due to free rotation of ligand sites of imidazole linkers, the selective formation of single conformational isomer (anti) as the only product is quite interesting. Furthermore, the photo-and electrochemical properties of these assemblies have been studied using UV/Vis absorption and cyclic voltammetry analysis. (c) 2013 Elsevier B.V. All rights reserved.
Resumo:
Objectives Based on previous screening results, the cytotoxic effect of the hexane (JDH) and ethyl acetate extracts (JDE) of the marine sponge Jaspis diastra were evaluated on HeLa cells and the present study aimed at determining their possible mechanism of cell death. Methods Nuclear staining, membrane potential change, flow cytometry analysis of cell cycle distribution and annexin V staining were undertaken to investigate the effects of JDE and JDH. Electrospray ionization mass spectrometry (ESI-MS) and nuclear magnetic resonance were used to characterize an isolated bioactive molecule. Key findings JDE displayed an IC50 25 times more significant than the JDH. Flow cytometry analysis revealed JDE induced apoptosis in HeLa cells accompanied by the collapse of mitochondrial membrane potential. Fractionation of JDE resulted in the isolation of the known cytotoxic cyclodepsipeptide, Jaspamide. Conclusions Taking our results together suggest that JDE can be valuable for the development of anticancer drugs, especially for cervical cancer. Further investigations are currently in progress with the aim to determine and isolate other bioactive compounds from this extract.
Resumo:
The marine snail Conus araneosus has unusual significance due to its confined distribution to coastal regions of southeast India and Sri Lanka. Due to its relative scarceness, this species has been poorly studied. In this work, we characterized the venom of C. araneosus to identify new venom peptides. We identified 14 novel compounds. We determined amino acid sequences from chemically-modified and unmodified crude venom using liquid chromatography-electrospray ionization mass spectrometry and matrix assisted laser desorption ionization time-of-flight mass spectrometry. Ten sequences showed six Cys residues arranged in a pattern that is most commonly associated with the M-superfamily of conotoxins. Four other sequences had four Cys residues in a pattern that is most commonly associated with the T-superfamily of conotoxins. The post-translationally modified residue (pyroglutamate) was determined at the N-terminus of two sequences, ar3h and ar3i respectively. In addition, two sequences, ar3g and ar3h were C-terminally amidated. At a dose of 2 nmol, peptide ar3j elicited sleep when injected intraperitoneally into mice. To our knowledge, this is the first report of a peptide from a molluscivorous cone snail with sleep-inducing effects in mice. The novel peptides characterized herein extend the repertoire of unique peptides derived from cone snails and may add value to the therapeutic promise of conotoxins. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
A benzil-based semi-rigid dinuclear organometallic acceptor 4,4'-bistrans-Pt(PEt3)(2)(NO3)(ethynyl)]benzil (bisPt-NO3) containing a Pt-ethynyl functionality was synthesized in good yield and characterized by multinuclear NMR (H-1, P-31, and C-13), electrospray ionization mass spectrometry (ESI-MS), and single-crystal X-ray diffraction analysis of the iodide analogue bisPt-I. The stoichiometric (1:1) combination of the acceptor bisPt-NO3 separately with four different ditopic donors (L-1-L-4; L-1 = 9-ethyl-3,6-di(1H-imidazol-1-yl)-9H-carbazole, L-2 = 1,4-bis((1H-imidazol-1-yl)methyl)benzene, L-3 = 1,3-bis((1H-imidazol-1-yl)methyl)benzene and L-4 = 9,10-bis((1H-imidazol-1-yl) methyl)anthracene) yielded four 2 + 2] self-assembled metallacycles M-1-M-4 in quantitative yields, respectively. All these newly synthesized assemblies were characterized by various spectroscopic techniques (NMR, IR, ESI-MS) and their sizes/shapes were predicted through geometry optimization employing the PM6 semi-empirical method. The benzil moiety was introduced in the backbone of the acceptor bisPt-NO3 due to the interesting structural feature of long carbonyl C-C bond (similar to 1.54 angstrom), which enabled us to probe the role of conformational flexibility on size and shapes of the resulting coordination ensembles.
Resumo:
Extreme isotopic variations among extraterrestrial materials provide great insights into the origin and evolution of the Solar System. In this tutorial review, we summarize how the measurement of isotope ratios can expand our knowledge of the processes that took place before and during the formation of our Solar System and its subsequent early evolution. The continuous improvement of mass spectrometers with high precision and increased spatial resolution, including secondary ion mass spectrometry (SIMS), thermal ionization mass spectrometry (TIMS) and multi collector-inductively coupled plasma-mass spectrometry (MC-ICP-MS), along with the ever growing amounts of available extraterrestrial samples have significantly increased the temporal and spatial constraints on the sequence of events that took place since and before the formation of the first Solar System condensates (i.e., Ca-Al-rich inclusions). Grains sampling distinct stellar environments with a wide range of isotopic compositions were admixed to, but possibly not fully homogenized in, the Sun's parent molecular cloud or the nascent Solar System. Before, during and after accretion of the nebula, as well as the formation and subsequent evolution of planetesimals and planets, chemical and physical fractionation processes irrevocably changed the chemical and isotopic compositions of all Solar System bodies. Since the formation of the first Solar System minerals and rocks 4.568 Gyr ago, short-and long-lived radioactive decay and cosmic ray interaction also contributed to the modification of the isotopic framework of the Solar System, and permit to trace the formation and evolution of directly accessible and inferred planetary and stellar isotopic reservoirs.
Resumo:
Isoprene (ISO),the most abundant non-methane VOC, is the major contributor to secondary organic aerosols (SOA) formation. The mechanisms involved in such transformation, however, are not fully understood. Current mechanisms, which are based on the oxidation of ISO in the gas-phase, underestimate SOA yields. The heightened awareness that ISO is only partially processed in the gas-phase has turned attention to heterogeneous processes as alternative pathways toward SOA.
During my research project, I investigated the photochemical oxidation of isoprene in bulk water. Below, I will report on the λ > 305 nm photolysis of H2O2 in dilute ISO solutions. This process yields C10H15OH species as primary products, whose formation both requires and is inhibited by O2. Several isomers of C10H15OH were resolved by reverse-phase high-performance liquid chromatography and detected as MH+ (m/z = 153) and MH+-18 (m/z = 135) signals by electrospray ionization mass spectrometry. This finding is consistent with the addition of ·OH to ISO, followed by HO-ISO· reactions with ISO (in competition with O2) leading to second generation HO(ISO)2· radicals that terminate as C10H15OH via β-H abstraction by O2.
It is not generally realized that chemistry on the surface of water cannot be deduced, extrapolated or translated to those in bulk gas and liquid phases. The water density drops a thousand-fold within a few Angstroms through the gas-liquid interfacial region and therefore hydrophobic VOCs such as ISO will likely remain in these relatively 'dry' interfacial water layers rather than proceed into bulk water. In previous experiments from our laboratory, it was found that gas-phase olefins can be protonated on the surface of pH < 4 water. This phenomenon increases the residence time of gases at the interface, an event that makes them increasingly susceptible to interaction with gaseous atmospheric oxidants such as ozone and hydroxyl radicals.
In order to test this hypothesis, I carried out experiments in which ISO(g) collides with the surface of aqueous microdroplets of various compositions. Herein I report that ISO(g) is oxidized into soluble species via Fenton chemistry on the surface of aqueous Fe(II)Cl2 solutions simultaneously exposed to H2O2(g). Monomer and oligomeric species (ISO)1-8H+ were detected via online electrospray ionization mass spectrometry (ESI-MS) on the surface of pH ~ 2 water, and were then oxidized into a suite of products whose combined yields exceed ~ 5% of (ISO)1-8H+. MS/MS analysis revealed that products mainly consisted of alcohols, ketones, epoxides and acids. Our experiments demonstrated that olefins in ambient air may be oxidized upon impact on the surface of Fe-containing aqueous acidic media, such as those of typical to tropospheric aerosols.
Related experiments involving the reaction of ISO(g) with ·OH radicals from the photolysis of dissolved H2O2 were also carried out to test the surface oxidation of ISO(g) by photolyzing H2O2(aq) at 266 nm at various pH. The products were analyzed via online electrospray ionization mass spectrometry. Similar to our Fenton experiments, we detected (ISO)1-7H+ at pH < 4, and new m/z+ = 271 and m/z- = 76 products at pH > 5.
Resumo:
I report the solubility and diffusivity of water in lunar basalt and an iron-free basaltic analogue at 1 atm and 1350 °C. Such parameters are critical for understanding the degassing histories of lunar pyroclastic glasses. Solubility experiments have been conducted over a range of fO2 conditions from three log units below to five log units above the iron-wüstite buffer (IW) and over a range of pH2/pH2O from 0.03 to 24. Quenched experimental glasses were analyzed by Fourier transform infrared spectroscopy (FTIR) and secondary ionization mass spectrometry (SIMS) and were found to contain up to ~420 ppm water. Results demonstrate that, under the conditions of our experiments: (1) hydroxyl is the only H-bearing species detected by FTIR; (2) the solubility of water is proportional to the square root of pH2O in the furnace atmosphere and is independent of fO2 and pH2/pH2O; (3) the solubility of water is very similar in both melt compositions; (4) the concentration of H2 in our iron-free experiments is <3 ppm, even at oxygen fugacities as low as IW-2.3 and pH2/pH2O as high as 24; and (5) SIMS analyses of water in iron-rich glasses equilibrated under variable fO2 conditions can be strongly influenced by matrix effects, even when the concentrations of water in the glasses are low. Our results can be used to constrain the entrapment pressure of the lunar melt inclusions of Hauri et al. (2011).
Diffusion experiments were conducted over a range of fO2 conditions from IW-2.2 to IW+6.7 and over a range of pH2/pH2O from nominally zero to ~10. The water concentrations measured in our quenched experimental glasses by SIMS and FTIR vary from a few ppm to ~430 ppm. Water concentration gradients are well described by models in which the diffusivity of water (D*water) is assumed to be constant. The relationship between D*water and water concentration is well described by a modified speciation model (Ni et al. 2012) in which both molecular water and hydroxyl are allowed to diffuse. The success of this modified speciation model for describing our results suggests that we have resolved the diffusivity of hydroxyl in basaltic melt for the first time. Best-fit values of D*water for our experiments on lunar basalt vary within a factor of ~2 over a range of pH2/pH2O from 0.007 to 9.7, a range of fO2 from IW-2.2 to IW+4.9, and a water concentration range from ~80 ppm to ~280 ppm. The relative insensitivity of our best-fit values of D*water to variations in pH2 suggests that H2 diffusion was not significant during degassing of the lunar glasses of Saal et al. (2008). D*water during dehydration and hydration in H2/CO2 gas mixtures are approximately the same, which supports an equilibrium boundary condition for these experiments. However, dehydration experiments into CO2 and CO/CO2 gas mixtures leave some scope for the importance of kinetics during dehydration into H-free environments. The value of D*water chosen by Saal et al. (2008) for modeling the diffusive degassing of the lunar volcanic glasses is within a factor of three of our measured value in our lunar basaltic melt at 1350 °C.
In Chapter 4 of this thesis, I document significant zonation in major, minor, trace, and volatile elements in naturally glassy olivine-hosted melt inclusions from the Siqueiros Fracture Zone and the Galapagos Islands. Components with a higher concentration in the host olivine than in the melt (MgO, FeO, Cr2O3, and MnO) are depleted at the edges of the zoned melt inclusions relative to their centers, whereas except for CaO, H2O, and F, components with a lower concentration in the host olivine than in the melt (Al2O3, SiO2, Na2O, K2O, TiO2, S, and Cl) are enriched near the melt inclusion edges. This zonation is due to formation of an olivine-depleted boundary layer in the adjacent melt in response to cooling and crystallization of olivine on the walls of the melt inclusions concurrent with diffusive propagation of the boundary layer toward the inclusion center.
Concentration profiles of some components in the melt inclusions exhibit multicomponent diffusion effects such as uphill diffusion (CaO, FeO) or slowing of the diffusion of typically rapidly diffusing components (Na2O, K2O) by coupling to slow diffusing components such as SiO2 and Al2O3. Concentrations of H2O and F decrease towards the edges of some of the Siqueiros melt inclusions, suggesting either that these components have been lost from the inclusions into the host olivine late in their cooling histories and/or that these components are exhibiting multicomponent diffusion effects.
A model has been developed of the time-dependent evolution of MgO concentration profiles in melt inclusions due to simultaneous depletion of MgO at the inclusion walls due to olivine growth and diffusion of MgO in the melt inclusions in response to this depletion. Observed concentration profiles were fit to this model to constrain their thermal histories. Cooling rates determined by a single-stage linear cooling model are 150–13,000 °C hr-1 from the liquidus down to ~1000 °C, consistent with previously determined cooling rates for basaltic glasses; compositional trends with melt inclusion size observed in the Siqueiros melt inclusions are described well by this simple single-stage linear cooling model. Despite the overall success of the modeling of MgO concentration profiles using a single-stage cooling history, MgO concentration profiles in some melt inclusions are better fit by a two-stage cooling history with a slower-cooling first stage followed by a faster-cooling second stage; the inferred total duration of cooling from the liquidus down to ~1000 °C is 40 s to just over one hour.
Based on our observations and models, compositions of zoned melt inclusions (even if measured at the centers of the inclusions) will typically have been diffusively fractionated relative to the initially trapped melt; for such inclusions, the initial composition cannot be simply reconstructed based on olivine-addition calculations, so caution should be exercised in application of such reconstructions to correct for post-entrapment crystallization of olivine on inclusion walls. Off-center analyses of a melt inclusion can also give results significantly fractionated relative to simple olivine crystallization.
All melt inclusions from the Siqueiros and Galapagos sample suites exhibit zoning profiles, and this feature may be nearly universal in glassy, olivine-hosted inclusions. If so, zoning profiles in melt inclusions could be widely useful to constrain late-stage syneruptive processes and as natural diffusion experiments.
Resumo:
232 p.
Resumo:
水母雪莲(Saussurea medusa Maxim.)和新疆雪莲(Saussurea involucrata Karel. et Kir.)是我国珍稀的药用植物资源,具有清热解毒、止痉镇痛、敛伤、消肿及治疗热病、风湿等多种功效。雪莲的主要药用成份为紫丁香甙(Syringin)、芦丁(Rutin)、高车前素(Hispidulin)和Jaceosidin等苯基丙酸类(phenylpropanoid)和黄酮类(flavonoids)物质。最新的药理研究表明,上述物质还具有抗菌消炎、保肝降压、延缓衰老和抑制癌细胞增殖等重要的研发价值。 雪莲生境恶劣,生长缓慢,人工引种困难,加上长期掠夺性采挖,已使雪莲处于灭绝的边缘。为了保存国家珍稀植物品种,保护生态环境,满足临床上对雪莲药物的需求,本研究在雪莲组织培养的基础上,应用诱导子添加技术和毛状根培养技术对雪莲中具有重要药用价值的次生代谢物质进行调控,并对雪莲MYB类转录因子的功能进行了初步探索,为保护珍稀植物资源、维护生态环境、开发野生雪莲替代产品、缩短雪莲药用成份的生产周期奠定了基础。另外,分析了野生雪莲和雪莲培养物中主要生物活性成份的种类及含量,为今后雪莲药理药效研究及品质评价奠定了基础。 为了提高雪莲黄酮的产量,满足工业化生产的需要,在细胞培养水平上,通过添加茉莉酸甲酯(MJ),对雪莲黄酮类物质的代谢进行调控。研究了诱导子的添加时间、添加浓度对水母雪莲红色系悬浮细胞的生物量和总黄酮产量的影响。发现在细胞培养的指数期(第9天)添加5.0 µmol/L的MJ,可以使总黄酮产量提高2.4倍(1134.5 ± 63.86 mg/L),而雪莲细胞干重(dw)仅比对照提高23.8 %(20.4 ±0.27 g/L)。另外,细胞中苯丙氨酸裂解酶(PAL)的活性分析表明,MJ添加后PAL活性的增加与雪莲总黄酮含量增长之间存在相关性。 在器官培养水平上,对雪莲毛状根的诱导频率及其培养条件进行了研究。结果表明,选择发根农杆菌R1601侵染预培养2天的新疆雪莲根段外植体,毛状根的诱导效率可达到83 %。毛状根的冠瘿碱检测、PCR和Southern分析表明,Ri质粒中的T-DNA已整合到植物基因组中并稳定表达。以新疆雪莲毛状根为外植体,能够容易地获得再生芽。在含有1.0 mg/L 6-BA的MS固体培养基上,其再生频率高达91 ± 5.9 %,是其正常根的2.4倍。而水母雪莲在该培养条件下,仅有少量的畸形芽出现。进而对毛状根的培养条件进行初步研究,结果表明在无激素附加的MS液体培养基中,新疆雪莲的HR1601根系在一个培养周期内(32 天),其生物量能够达到接种量的16倍,而紫丁香甙含量(43.5 ± 1.13 mg/g dw)能够达到野生雪莲的83倍。从而显示了雪莲毛状根培养体系的优良特性。 在基因水平上,对雪莲黄酮类物质代谢调控的研究已经展开。玉米P基因编码的Myb类转录因子能够调节黄酮类物质代谢途径关键酶基因的表达。根据P基因的保守序列设计引物,从雪莲细胞培养物中获得了SmP基因。核酸序列分析表明,SmP基因与烟草中涉及苯丙素类物质代谢途径的LBM 1、LBM 3和MybAS 1基因具有较高的一致性,分别为66 %、60 %和61 %。因此为了研究雪莲SmP基因的功能,构建了正义表达载体,并与先前构建好的反义表达载体分别导入烟草,分析了转基因植株的形态特征及黄酮类物质的含量变化。其中,约有30 %转反义SmP基因的株系表现叶片皱缩、叶脉紊乱、主侧脉角度缩小、叶片、花瓣失去对称性以及花粉败育等性状。 另外,通过正交试验设计优化了雪莲提取工艺的条件,并对雪莲细胞提取物进行了分离纯化。正交试验设计结果表明,温度对雪莲黄酮提取效率的影响极为显著,而分批多次提取比一次性浸提,能够收到较好的提取效果。考虑到工业生产中的实际问题,推荐在60 ℃水浴条件下,采用50 %乙醇对雪莲样品连续浸提2次的方案。对雪莲提取物的纯化研究表明,雪莲成份复杂,仅依靠单一的分离手段,往往难以奏效。另外,野生雪莲及雪莲培养物中生物活性成份的比色法、HPLC(High Performance Liquid Chromatography)、LC-ESI-MS(Liquid Chromotagraphy Electrospray Ionization Mass Spectrometry)分析表明,传统的NaNO2-AlCl3 法测定雪莲总黄酮的含量,结果偏高,不利于雪莲黄酮的实验室研究分析与今后工业化生产的质量监控。而AlCl3 法的显色反应较为特异,今后有望取代NaNO2-AlCl3 法,作为雪莲类药材品质评价的标准。而HPLC-DAD结合LC-ESI-MS可以对雪莲中的主要生物活性成份进行较为准确的定性分析,从而解决了由于缺乏相应的雪莲化合物标准品而难以对雪莲中的成份进行定性定量分析及比较的难题。最后综合利用上述分析方法,对雪莲细胞培养物中的花素类物质进行了分析。结果表明,雪莲细胞中至少含有7种花色素类物质,分别为矢车菊素-3-O-葡萄糖甙及其衍生物、天竺葵素糖甙衍生物和芍药色素糖甙衍生物。
Resumo:
A novel bradykinin-potentiating peptide (BPP), designated as TmF, has been purified to homogeneity from the venom of Trimeresurus mucrosquamatus by 70% cold methanol extraction, Sephadex G-15 gel filtration and reverse-phase high performance liquid chromatography (RP-HPLC). The amino acid sequence of TmF was determined to be pGlu-Gly-Arg-Pro-Leu-Gly-Pro-Pro-Ile-Pro-Pro (pGlu denotes pyroglutamic acid), which shared high homology with other BPPs. The molecular mass of TmF was 1.1107 kD as determinated by electrospray ionization-mass spectrometry (ESI-MS), which was in accordance with the calculated value of 1.1106 kD. The potentiating "unit" of TmF to bradykinin-induced (BK-induced) contraction on the guinea-pig ileum in vitro was (1.13 +/- 0.3) unit (mg/L), and TmF (5.0 x 10(-4) mg/kg) increased the pressure-lowering-effect of bradykinin (5.0 x 10(-5) mg/kg) with approximate descent value of (14 +/- 2) mmHg. In addition, TmF inhibited the conversion of angiotensin I to angiotensin 11, 2 x 10(-3) mg of TmF caused 50% inhibition (IC50) of angiotensin-converting enzyme (ACE) hydrolyzing activity to bradykinin.
Resumo:
In this paper, accumulation and distribution of microcystins (MCs) was examined monthly in six species of fish with different trophic levels in Meiliang Bay, Lake Taihu, China, from June to November 2005, Microcystins were analyzed by liquid chromatography electrospray ionization mass spectrometry (LC-ESI-MS). Average recoveries of spiked fish samples were 67.7% for MC-RR, 85.3% for MC-YR, and 88.6% for MC-LR. The MCs (MC-RR+MC-YR+MC-LR) concentration in liver and gut content was highest in phytoplanktivorous fish, followed by omnivorous fish, and was lowest in carnivorous fish; while MCs concentration in muscle was highest in omnivorous fish, followed by phytoplanktivorous fish, and was lowest in carnivorous fish. This is the first study reporting MCs accumulation in the gonad of fish in field. The main uptake of MC-YR in fish seems to be through the gills from the dissolved MCs. The WHO limit for tolerable daily intake was exceeded only in common carp muscle. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
A rapid and sensitive method was developed and validated for the determination of MCYST (microcystin)-RR, -LR, and [Dha(7)] MCYST-LR in rat plasma by liquid chromatography-tandem mass spectrometry. The analytes were extracted from rat plasma by protein precipitation, followed by solid-phase extraction. Liquid chromatography with electrospray ionization mass spectrometry, operating in selected reaction monitoring (SRM) mode, was used to quantify MCYST-RR, -LR, and [Dha(7)] MCYST-LR in rat plasma. The recoveries for each analyte in rat plasma ranged from 70.8 to 88.7%. The calibration curve was linear within the range from 0.005 to 1.25 mu g mL(-1). The limit of detection were 1.4, 1.0, 0.6 ng mL(-1) for MCYST-RR, -LR, and [Dha(7)] MCYST-LR. The overall precision was determined on three different days. The values for within- and between-day precision in rat plasma were within 15%. This method was applied to the identification and quantification of microcystins in rat plasma with acute exposure of microcystins via intravenous injection.
Resumo:
首先,对虎眼万年青中化学成分进行了分离提取研究,采用柱层析和薄层层析等方法,并利用电喷雾质谱技术跟踪洗脱流分,首次从虎眼万年青氯仿提取物中分离得到两个新化合物。其一为单菇内酷loliolide,通过FT-ICRMS高分辨质谱、IR和NMR等手段对其结构进行了确定,并通过IHNMR和旋光法确定了其绝对构型。此外,还利用电喷雾多级串联质谱(ESI一MSn)技术对其质谱裂解规律进行了系统研究,其分析结果与NMR解析结果完全一致,建立了该类化合物结构解析的简便、快速的质谱新方法;另一化合物为生物碱类化合物,采用电喷雾多级串联质谱技术对其质谱裂解规律进行了详细研究,并对其结构进行了初步推断,进一步的NMR结构确定正在进行中。其次,对虎眼万年青多糖成分进行了分离提取研究,并结合体外抑瘤活性评价实验,确定了两种具有抑瘤生物活性的多糖成分OC一2一1一c和OC一2一卜d。并通过SDS凝胶电泳和糖基组成分析,初步证明了虎眼万年青中的活性多糖成分为阿拉伯半乳糖蛋白(AGPs),为进一步研究虎眼万年青抗肿瘤活性提供了基础数据和理论指导。此外,还对虎眼万年青中的微量元素及其溶出率进行了初步的研究,研究结果表明,其水煎液中Cu/Zn比值明显低于癌症患者血清中的Cu/Zn比值,因此,虎眼万年青可能有助于调节癌症患者体内的Cu、Zn平衡,从而达到抗癌目的;而虎眼万年青中Se、Ge含量很低,不能作为两种微量元素的药用来源。为了进一步研究抗癌药物的作用机理,我们采用电喷雾质谱技术,对三种临床疗效较好的抗癌药物与DNA相互作用进行了系统的研究,确定了复合物的化学计量比及其结合的特异性,并利用竞争实验方法,研究了抗癌药物的相对结合强度。质谱实验结果与液相行为完全一致,其中抗癌药物米托葱醒为首次利用质谱进行研究。最后,采用电喷雾质谱技术,对硝酸盐离子簇合物进行了详细研究,发现了双电荷簇合物离子,并且在离子簇合物中还发现了魔数规律的存在。利用电喷雾多级串联质谱技术,研究了双电荷簇合物离子的质谱裂解规律,并对其稳定性进行了分析。此外,还讨论了溶液浓度和毛细管温度对离子簇合物形成的影响规律。