954 resultados para Intrinsic ferromagnetism


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Influence of succinonitrile (SN) dynamics on ion transport in SN-lithium perchlorate (LiClO4) electrolytes is discussed here via dielectric relaxation spectroscopy. Dielectric relaxation spectroscopy (similar to 2 x 10(-3) Hz to 3 MHz) of SN and SN-LiClO4 was studied as a function of salt content (up to 7 mol % or 1 M) and temperature (-20 to +60 degrees C). Analyses of real and imaginary parts of permittivity convincingly reveal the influence Of trans gauche isomerism and solvent-salt association (solvation) effects on ion transport. The relaxation processes are highly dependent on the salt concentration and temperature. While pristine SN display only intrinsic dynamics (i.e., trans-gauche isomerism) which enhances with an increase in temperature, SN-LiClO4 electrolytes especially at high salt concentrations (similar to 0.04-1 M) show salt-induced relaxation processes. In the concentrated electrolytes, the intrinsic dynamics was observed to be a function of salt content, becoming faster with an increase in salt concentration. Deconvolution of the imaginary part of the permittivity spectra using Havriliak-Negami (HN) function show a relaxation process corresponding to the above phenomena. The permittivity data analyzed using HN and Kohlrausch-Williams-Watta (KWW) functions show non-Debye relaxation processes and enhancement in the trans phase (enhanced solvent dynamics) as a function of salt concentration and temperature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Uniaxial compression tests were conducted on Ti-6Al-4V specimens in the strain-rate range df 0.001 to 1 s(-1) and temperature range of 298 to 673 K. The stress-strain curves exhibited a peak flow stress followed by flow softening. Up to 523 K, the specimens cracked catastrophically after the flow softening started. Adiabatic shear banding was observed in this regime. The fracture surface exhibited both mode I and II fracture features. The state of stress existing in a compression test specimen when bulging occurs is responsible for this fracture. The instabilities observed in the present tests are classified as ''geometric'' in nature and are state-of-stress dependant, unlike the ''intrinsic'' instabilities, which are dependant on the dynamic constitutive behavior of the material.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Serine hydroxymethyltransferase (SHMT), EC 2.1.2.1, exhibits broad substrate and reaction specificity. In addition to cleaving many 3-hydroxyamino acids to glycine and an aldehyde, the enzyme also catalyzed the decarboxylation, transamination and racemization of several substrate analogues of amino acids. To elucidate the mechanism of interaction of substrates, especially L-serine with the enzyme, a comparative study of interaction of L-serine with the enzyme from sheep liver and Escherichia coli, was carried out. The heat stability of both the enzymes was enhanced in the presence of serine, although to different extents. Thermal denaturation monitored by spectral changes indicated an alteration in the apparent T, of sheep liver and E. coli SHMTs from 55 +/- 1 degrees C to 72 +/- 3 degrees C at 40 mM serine and from 67 +/- 1 degrees C to 72 +/- 1 degrees C at 20 mM serine, respectively. Using stopped flow spectrophotometry k values of (49 +/- 5)(.)10(-3) s(-1) and (69 +/- 7).10(-3) s(-1) for sheep liver and E. coli enzymes were determined at 50 mM serine. The binding of serine monitored by intrinsic fluorescence and sedimentation velocity measurements indicated that there was no generalized change in the structure of both proteins. However, visible CD measurements indicated a change in the asymmetric environment of pyridoxal 5'-phosphate at the active site upon binding of serine to both the enzymes. The formation of an external aldimine was accompanied by a change in the secondary structure of the enzymes monitored by far UV-CD spectra. Titration microcalorimetric studies in the presence of serine (8 mM) also demonstrated a single class of binding and the conformational changes accompanying the binding of serine to the enzyme resulted in a more compact structure leading to increased thermal stability of the enzyme.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The entry of the plant toxin ricin and its A- and B-subunits in model membranes in the presence as well as absence of monosialoganglioside (GM(1)) has been studied. Dioleoylphosphatidylcholine and 5-, 10-, and 12-doxyl- or 9,10-dibromophosphatidylcholines serve as quenchers of intrinsic tryptophan fluorescence of the proteins. The parallax method of Chattopadhyay and London [(1987) Biochemistry 26, 39-45] has been employed to measure the average membrane penetration depth of tryptophans of ricin and its B-chain and the actual depth of the sole Trp 211 in the A-chain. The results indicate that both of the chains as well as intact ricin penetrate the membrane deeply and the C-terminal end of the A-chain is well inside the bilayer, especially at pH 4.5. An extrinsic probe N-(iodoacetyl)-N'-(5-sulfo-1-naphthyl) ethylenediamine (I-AEDANS) has been attached to Cys 259 of the A-chain, and the kinetics of penetration has been followed by monitoring the increase in AEDANS fluorescence at 480 nm. The insertion follows first-order kinetics, and the rate constant is higher at a lower pH. The energy transfer distance analysis between Trp 211 and AEDANS points out that the conformation of the A-chain changes as it inserts into the membrane. CD studies indicate that the helicity of the proteins increases after penetration, which implies that some of the unordered structure in the native protein is converted to the ordered form during this process. Hydrophobic forces seem to be responsible for stabilizing a particular protein conformation inside the membrane.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The discovery of giant magnetoresistance (GMR) in rare earth manganates of the general formula Ln(1-x)A(x)MnO(3) (Ln = rare earth, A = divalent cation) has aroused much interest not only because of its technological implications, but also due to the fascinating features and mechanism of the phenomemon in these oxides. GMR is observed in these manganates when they become ferromagnetic and transform from an insulating state to a metallic state close to the Curie temperature. The essential features of magnetoresistance in the manganates can be understood on the basis of the double-exchange mechanism, but this is too simplistic to account for all the observed data. The most curious property of the manganates relates to the high resistivity exhibited in the so-called metallic state. Charge ordering competes with the double-exchange interaction responsible for ferromagnetism and GMR in these materials. The charge-ordered (charge-crystal) insulating state in the rare earth manganates can be melted into a metallic and ferromagnetic charge-liquid state by applying a magnetic field, thus providing a unique case of charge and spin separation in solids. The observation of GMR in Tl2Mn2O7 shows that there can be causes other than double-exchange for the phenomenon.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have investigated tunneling conductances in disordered, normally conducting perovskite oxides close to the metal�insulator transition. We show that the normal state tunneling conductance of perovskite oxides can be cast in a general form G(V) = G0[1 + curly logical orV/V*curly logical orn] with 1?n?0.5 and where V* is an intrinsic energy scale. The exponent n graduall y increases from 0.5 to 1 as the metal-insulator (M-I) transition is approached. In the high-Tc Bi(2212) cuprates, the normally observed, linear G(V)(n=1) can be made sub-linear (n<1) by substitution of Ca with Y. From the similarity of the linear conductances, we suggest proximity to the M-I transition as a likely cause for this G(V)logical or, bar below V dependence. In systems showing linear conductances (nreverse similar, equals1), we find that ?G/?Vreverse similar, equalsG?0 with ?reverse similar, equals 1 and the intrinsic energy scale V*reverse similar, equals25�75 meV in the different oxides investigated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have studied resistivity, magnetization, and magnetoresistance in polycrystalline La0.67Ba0.33MnOz by reducing the oxygen stoichiometry from z=2.99 to 2.80. As the oxygen content decreases, the resistivity of La0.67Ba0.33 MnOz increases and the magnetic transition temperature shifts to lower temperature. A large magnetoresistance effect was observed over a wide temperature range for all samples except the insulating z=2.80 sample. The similarity between our results on oxygen-deficient polycrystalline La0.67 Ba0.33MnOz and films previously reported to have a very large intrinsic magnetoresistance is discussed. At low temperature the magnetoresistance was observed to be strongly dependent on the magnetization. A possible mechanism for this effect is discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A radio study of a carefully selected sample of 20 Seyfert galaxies that are matched in orientation-independent parameters, which are measures of intrinsic active galactic nucleus power and host galaxy properties, is presented to test the predictions of the unified scheme hypothesis. Our sample sources have core flux densities greater than 8 mJy at 5 GHz on arcsec scales due to the feasibility requirements. These simultaneous parsec-scale and kiloparsec-scale radio observations reveal (1) that Seyfert 1 and Seyfert 2 galaxies have an equal tendency to show compact radio structures on milliarcsecond scales, (2) the distributions of parsec-scale and kiloparsec-scale radio luminosities are similar for both Seyfert 1 and Seyfert 2 galaxies, (3) there is no evidence for relativistic beaming in Seyfert galaxies, (4) similar distributions of source spectral indices in spite of the fact that Seyferts show nuclear radio flux density variations, and (5) the distributions of the projected linear size for Seyfert 1 and Seyfert 2 galaxies are not significantly different as would be expected in the unified scheme. The latter could be mainly due to a relatively large spread in the intrinsic sizes. We also find that a starburst alone cannot power these radio sources. Finally, an analysis of the kiloparsec-scale radio properties of the CfA Seyfert galaxy sample shows results consistent with the predictions of the unified scheme.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The intercalation of pyridine in the layered manganese thiophosphate, MnPS3, has been examined in detail by a variety of techniques. The reaction is interesting since none of the anticipated changes in optical and electrical properties associated with intercalation of electron donating molecules is observed. The only notable change in the properties of the host lattice is in the nature of the low-temperature magnetic ordering; while MnPS3 orders antiferromagnetically below 78 K, the intercalated compound shows weak ferromagnetism probably due to a canted spin structure. Vibrational spectra clearly show that the intercalated species are pyridinium ions solvated by neutral pyridine molecules. The corresponding reduced sites of the host lattice, however, were never observed. The molecules in the solvation shell are exchangeable. Although the reaction appears to be topotactic and reversible, from XRD, a more detailed analysis of the products of deintercalation reveal that it is not so. The intercalation proceeds by an ion exchange/intercalation mechanism wherein the intercalated species are pyridinium ions solvated by neutral molecules with charge neutrality being preserved not by electron transfer but by a loss of Mn2+ ions from the lattice. The experimental evidence leading to this conclusion is discussed and it is shown that this model can account satisfactorily for the observed changes (or lack of it) in the optical, electrical, vibrational, and magnetic properties.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Different phases of Eu3+ activated gadolinium oxide (Gd (OH)(3), GdOOH and Gd2O3) nanorods have been prepared by the hydrothermal method with and without cityl trimethyl ammonium bromide (GAB) surfactant. Cubic Gd2O3:Eu (8 mol%) red phosphor has been prepared by the dehydration of corresponding hydroxide Gd(OH)(3):Eu after calcinations at 350 and 600 degrees C for 3 h, respectively. When Eu3+ ions were introduced into Gd(OH)(3), lattice sites which replace the original Gd3+ ions, a strong red emission centered at 613 nm has been observed upon UV illumination, due to the intrinsic Eu3+ transition between D-5(0) and F-7 configurations. Thermoluminescence glow curves of Gd (OH)(3): Eu and Gd2O3:Eu phosphors have been recorded by irradiating with gamma source ((CO)-C-60) in the dose range 10-60 Gy at a heating rate of 6.7 degrees C sec(-1). Well resolved glow peaks in the range 42-45, 67-76,95-103 and 102-125 degrees C were observed. When gamma-irradiation dose increased to 40 Gy, the glow peaks were reduced and with increase in gamma-dose (50 and 60 Gy) results the shift in first two glow peak temperatures at about 20 degrees C and a new shouldered peak at 86 degrees C was observed. It is observed that there is a shift in glow peak temperatures and variation in intensity, which is mainly attributed to different phases of gadolinium oxide. The trapping parameters namely activation energy (E), order of kinetics (b) and frequency factor were calculated using peak shape and the results are discussed. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using the d=infinity or local-approximation approach to the half-filled Hubbard model on a compressible lattice, we present a detailed study of the transport and structural properties near the paramagnetic metal-insulator transition. The results describe qualitatively most of the observed data in V2O3, including the metal-insulator-metal crossover [Kuwamoto et al., Phys. Rev. B 22, 2626 (1980)]. In addition, we discuss an interesting and intrinsic reentrance feature in the resistivity of the half-filled Hubbard model at high temperatures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigate the dynamics of polymers whose solution configurations are represented by fractional Brownian walks. The calculation of the two dynamical quantities considered here, the longest relaxation time tau(r) and the intrinsic viscosity [eta], is formulated in terms of Langevin equations and is carried out within the continuum approach developed in an earlier paper. Our results for tau(r) and [eta] reproduce known scaling relations and provide reasonable numerical estimates of scaling amplitudes. The possible relevance of the work to the study of globular proteins and other compact polymeric phases is discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ordering of Mn3+ and Mn4+ ions occurs in the rare earth manganates of the general composition Ln(1-x)A(x)MnO(3) (Ln rare earth, A = Ca, Sr). Such charge-ordering is associated with antiferromagnetic and insulating properties. This phenomenon is to be contrasted with the ferromagnetic metallic behavior that occurs when double-exchange between the Mn3+ and Mn4+ ions predominates. Two distinct types of charge-ordering can be delineated. In one, a ferromagnetic metallic (FMM) state transforms to the charge-ordered (CO) state on cooling. In the other scenario, the CO state is found in the paramagnetic ground stale and there is no ferromagnetism down to the lowest temperatures. Magnetic fields transform the CO state to the FMM state, when the average radius of the A-site cations is sufficiently large ([r(A)] > 1.17 Angstrom). Chemical melting of the CO state by Cr3+ substitution in the Mn site is also found only when [r(A)] greater than or similar to 1.17 Angstrom. The effect of the size of the A-cations on the Mn-O-Mn angle is not enough to explain the observed variations of the charge-ordering temperature as well as the ferromagnetic Curie temperature T-c. An explanation based on a competition between the Mn and A-cation orbitals for sigma-bonding with the oxygen rho(sigma) orbitals is considered to account for the large changes in T-c and hence the true bandwidth, with [r(A]). Effects of radiation, electric field, and other factors on the CO state are discussed along with charge-ordering in other manganate systems. Complex phase transitions, accompanied by changes in electronic and magnetic properties, occur in manganates with critical values of(rA) Or bandwidth. Charge-ordering is found in layered manganates, BixCa1-xMnO3 and CaMnO3-delta.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The quest for novel two-dimensional materials has led to the discovery of hybrids where graphene and hexagonal boron nitride (h-BN) occur as phase-separated domains. Using first-principles calculations, we study the energetics and electronic and magnetic properties of such hybrids in detail. The formation energy of quantum dot inclusions (consisting of n carbon atoms) varies as 1/root n, owing to the interface. The electronic gap between the occupied and unoccupied energy levels of quantum dots is also inversely proportional to the length scale, 1/root n-a feature of confined Dirac fermions. For zigzag nanoroads, a combination of the intrinsic electric field caused by the polarity of the h-BN matrix and spin polarization at the edges results in half-metallicity; a band gap opens up under the externally applied ``compensating'' electric field. For armchair nanoroads, the electron confinement opens the gap, different among three subfamilies due to different bond length relaxations at the interfaces, and decreasing with the width.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper the effects of constant and cyclic power loads on the evolution of interfacial reaction layers in lead-free solder interconnections are presented. Firstly, the differences in the growth behavior of intermetallic compound (IMC) layers at the cathode and anode sides of the interconnections are rationalized. This is done by considering the changes in the intrinsic fluxes of elements owing to electromigration as well as taking into account the fact that the growth of Cu3Sn and Cu6Sn5 are coupled via interfacial reactions. In this way, better understanding of the effect of electron flux on the growth of each individual layer in the Cu-Sn system can be achieved. Secondly, it is shown that there is a distinct difference between steady-state current stressing (constant current, constant temperature) and power cycling with alternating on- and off-cycle periods (accompanied by a change of temperature). The reasons behind the observed differences are subsequently discussed. Finally, special care is taken to ensure that the current densities are chosen in such a way that there is no risk for even partial melting of the solder interconnections.