908 resultados para Institute of Pacific Relations. American Council.
Resumo:
Rising anthropogenic carbon dioxide (CO2) dissolving into coastal waters is decreasing the pH and carbonate ion concentration, thereby lowering the saturation state of calcium carbonate (CaCO3) minerals through a process named ocean acidification (OA). The unprecedented threats posed by such low pH on calcifying larvae of several edible oyster species have not yet been fully explored. Effects of low pH (7.9, 7.6, 7.4) on the early growth phase of Portuguese oyster (Crassostrea angulata) veliger larvae was examined at ambient salinity (34 ppt) and the low-salinity (27 ppt) treatment. Additionally, the combined effect of pH (8.1, 7.6), salinity (24 and 34 ppt) and temperature (24 °C and 30 °C) was examined using factorial experimental design. Surprisingly, the early growth phase from hatching to 5-day-old veliger stage showed high tolerance to pH 7.9 and pH 7.6 at both 34 ppt and 27 ppt. Larval shell area was significantly smaller at pH 7.4 only in low-salinity. In the 3-factor experiment, shell area was affected by salinity and the interaction between salinity and temperature but not by other combinations. Larvae produced the largest shell at the elevated temperature in low-salinity, regardless of pH. Thus the growth of the Portuguese oyster larvae appears to be robust to near-future pH level (> 7.6) when combined with projected elevated temperature and low-salinity in the coastal aquaculture zones of South China Sea.
Resumo:
The dataset is based on samples collected in the autumn of 2001 in the Western Black Sea in front of Bulgaria coast. The whole dataset is composed of 42 samples (from 19 stations of National Monitoring Grid) with data of mesozooplankton species composition abundance and biomass. Samples were collected in the layers 0-10, 0-20, 0-50, 10-25, 25-50, 50-100 and from bottom up to the surface at depths depending on water column stratification and the thermocline depth. Zooplankton samples were collected with vertical closing Juday net,diameter - 36cm, mesh size 150 µm. Tows were performed from surface down to bottom meters depths in discrete layers. Samples were preserved by a 4% formaldehyde sea water buffered solution. Sampling volume was estimated by multiplying the mouth area with the wire length. Mesozooplankton abundance: The collected material was analysed using the method of Domov (1959). Samples were brought to volume of 25-30 ml depending upon zooplankton density and mixed intensively until all organisms were distributed randomly in the sample volume. After that 5 ml of sample was taken and poured in the counting chamber which is a rectangle form for taxomomic identification and count. Large (> 1 mm body length) and not abundant species were calculated in whole sample. Counting and measuring of organisms were made in the Dimov chamber under the stereomicroscope to the lowest taxon possible. Taxonomic identification was done at the Institute of Oceanology by Kremena Stefanova using the relevant taxonomic literature (Mordukhay-Boltovskoy, F.D. (Ed.). 1968, 1969,1972). Taxon-specific abundance: The collected material was analysed using the method of Domov (1959). Samples were brought to volume of 25-30 ml depending upon zooplankton density and mixed intensively until all organisms were distributed randomly in the sample volume. After that 5 ml of sample was taken and poured in the counting chamber which is a rectangle form for taxomomic identification and count. Copepods and Cladoceras were identified and enumerated; the other mesozooplankters were identified and enumerated at higher taxonomic level (commonly named as mesozooplankton groups). Large (> 1 mm body length) and not abundant species were calculated in whole sample. Counting and measuring of organisms were made in the Dimov chamber under the stereomicroscope to the lowest taxon possible. Taxonomic identification was done at the Institute of Oceanology by Kremena Stefanova using the relevant taxonomic literature (Mordukhay-Boltovskoy, F.D. (Ed.). 1968, 1969,1972).
Resumo:
The gradually increased atmospheric CO2 partial pressure (pCO2) has thrown the carbonate chemistry off balance and resulted in decreased seawater pH in marine ecosystem, termed ocean acidification (OA). Anthropogenic OA is postulated to affect the physiology of many marine calcifying organisms. However, the susceptibility and metabolic pathways of change in most calcifying animals are still far from being well understood. In this work, the effects of exposure to elevated pCO2 were characterized in gills and hepatopancreas of Crassostrea gigas using integrated proteomic and metabolomic approaches. Metabolic responses indicated that high CO2 exposure mainly caused disturbances in energy metabolism and osmotic regulation marked by differentially altered ATP, glucose, glycogen, amino acids and organic osmolytes in oysters, and the depletions of ATP in gills and the accumulations of ATP, glucose and glycogen in hepatopancreas accounted for the difference in energy distribution between these two tissues. Proteomic responses suggested that OA could not only affect energy and primary metabolisms, stress responses and calcium homeostasis in both tissues, but also influence the nucleotide metabolism in gills and cytoskeleton structure in hepatopancreas. This study demonstrated that the combination of proteomics and metabolomics could provide an insightful view into the effects of OA on oyster C. gigas. BIOLOGICAL SIGNIFICANCE: The gradually increased atmospheric CO2 partial pressure (pCO2) has thrown the carbonate chemistry off balance and resulted in decreased seawater pH in marine ecosystem, termed ocean acidification (OA). Anthropogenic OA is postulated to affect the physiology of many marine calcifying organisms. However, the susceptibility and metabolic pathways of change in most calcifying animals are still far from being understood. To our knowledge, few studies have focused on the responses induced by pCO2 at both protein and metabolite levels. The pacific oyster C. gigas, widely distributed throughout most of the world's oceans, is a model organism for marine environmental science. In the present study, an integrated metabolomic and proteomic approach was used to elucidate the effects of ocean acidification on Pacific oyster C. gigas, hopefully shedding light on the physiological responses of marine mollusk to the OA stress.
Resumo:
Ocean acidification is anticipated to decrease calcification and increase dissolution of shelled molluscs. Molluscs with thinner and weaker shells may be more susceptible to predation, but not all studies have measured negative responses of molluscs to elevated pCO2. Recent studies measuring the response of molluscs have found greater variability at the population level than first expected. Here we investigate the impact of acidification on the predatory whelk Morula marginalba and genetically distinct subpopulations of the Pacific oyster Crassostrea gigas. Whelks and eight family lines of C. gigas were separately exposed to ambient (385 ppm) and elevated (1000 ppm) pCO2 for 6 weeks. Following this period, individuals of M. marginalba were transferred into tanks with oysters at ambient and elevated pCO2 for 17 days. The increase in shell height of the oysters was on average 63% less at elevated compared to ambient pCO2. There were differences in shell compression strength, thickness, and mass among family lines of C. gigas, with sometimes an interaction between pCO2 and family line. Against expectations, this study found increased shell strength in the prey and reduced shell strength in the predator at elevated compared to ambient pCO2. After 10 days, the whelks consumed significantly more oysters regardless of whether C. gigas had been exposed to ambient or elevated CO2, but this was not dependent on the family line and the effect was not significant after 17 days. Our study found an increase in predation after exposure of the predator to predicted near-future levels of estuarine pCO2.
Resumo:
This article describes a first group of theoretical and experimental works undertaken at the Polytechnic University of Madrid. One major purpose is to obtain a structural model for the assessment of historical Latin-American vertically laminated planked timber arches built by the Spanish, mainly in the XVII and XVIII centuries. Many of those constructions still stand and represent a notable historical heritage. Pedro Hurtado recently presented his Ph. D. thesis on historical and construction topics. A structural study was then undertaken. This step of the structural research focussed on static analysis, most especially the deformation in the connection system. This article describes part of this first structural research. Even though it is still at a basic level, it shows reasonable agreement with the experimental results. Further static analytical models are been now developed and implemented. The next stage will address the dynamic problem, even though improvements will be made also in the constitutive equations.
Resumo:
This paper shows the results of the study of physical, mechanic and chemical behaviour of some natural zeolite types sampled in different outcrops of the world, mainly from Mexico, Cuba and Spain, as well as their incidence in certain practical applications, by means of the utilization of its pozzuolanic properties. Results emphasize that every natural zeolite variety gives different answers in the assays, probably influenced by the subtle variability of their chemical composition. Key words: zeolites, pozzuolanic, density, geometric, strength
Resumo:
Peer reviewed