923 resultados para Input impedance
Resumo:
Electrochemical impedance spectroscopy (EIS) is a helpful tool to understand how a battery is behaving and how it degrades. One of the disadvantages is that it is typically an 'off-line' process. This paper investigates an alternative method of looking at impedance spectroscopy of a battery system while it is on-line and operational by manipulating the switching pattern of the dc-dc converter to generate low frequency harmonics in conjunction with the normal high frequency switching pattern to determine impedance in real time. However, this adds extra ripple on the inductor which needs to be included in the design calculations. The paper describes the methodology and presents some experimental results in conjunction with EIS results to illustrate the concept.
Resumo:
Identifying the pathways contributing to local field potential (LFP) events and oscillations is essential to determine whether synchronous interregional patterns indicate functional connectivity. Here, we studied experimentally and numerically how different target structures receiving input from a common population shape their LFPs. We focused on the bilateral CA3 that sends gamma-paced excitatory packages to the bilateral CA1, the lateral septum, and itself (recurrent input). The CA3-specific contribution was isolated from multisite LFPs in target regions using spatial discrimination techniques. We found strong modulation of LFPs by target-specific features, including the morphology and population arrangement of cells, the timing of CA3 inputs, volume conduction from nearby targets, and co-activated inhibition. Jointly they greatly affect the LFP amplitude, profile, and frequency characteristics. For instance, ipsilateral (Schaffer) LFPs occluded contralateral ones, and septal LFPs arise mostly from remote sources while local contribution from CA3 input was minor. In the CA3 itself, gamma waves have dual origin from local networks: in-phase excitatory and nearly antiphase inhibitory. Also, waves may have different duration and varying phase in different targets. These results indicate that to explore the cellular basis of LFPs and the functional connectivity between structures, besides identifying the origin population/s, target modifiers should be considered.
Resumo:
Power system policies are broadly on track to escalate the use of renewable energy resources in electric power generation. Integration of dispersed generation to the utility network not only intensifies the benefits of renewable generation but also introduces further advantages such as power quality enhancement and freedom of power generation for the consumers. However, issues arise from the integration of distributed generators to the existing utility grid are as significant as its benefits. The issues are aggravated as the number of grid-connected distributed generators increases. Therefore, power quality demands become stricter to ensure a safe and proper advancement towards the emerging smart grid. In this regard, system protection is the area that is highly affected as the grid-connected distributed generation share in electricity generation increases. Islanding detection, amongst all protection issues, is the most important concern for a power system with high penetration of distributed sources. Islanding occurs when a portion of the distribution network which includes one or more distributed generation units and local loads is disconnected from the remaining portion of the grid. Upon formation of a power island, it remains energized due to the presence of one or more distributed sources. This thesis introduces a new islanding detection technique based on an enhanced multi-layer scheme that shows superior performance over the existing techniques. It provides improved solutions for safety and protection of power systems and distributed sources that are capable of operating in grid-connected mode. The proposed active method offers negligible non-detection zone. It is applicable to micro-grids with a number of distributed generation sources without sacrificing the dynamic response of the system. In addition, the information obtained from the proposed scheme allows for smooth transition to stand-alone operation if required. The proposed technique paves the path towards a comprehensive protection solution for future power networks. The proposed method is converter-resident and all power conversion systems that are operating based on power electronics converters can benefit from this method. The theoretical analysis is presented, and extensive simulation results confirm the validity of the analytical work.
Resumo:
Solar radiation takes in today's world, an increasing importance. Different devices are used to carry out spectral and integrated measurements of solar radiation. Thus the sensors can be divided into the fallow types: Calorimetric, Thermomechanical, Thermoelectric and Photoelectric. The first three categories are based on components converting the radiation to temperature (or heat) and then into electrical quantity. On the other hand, the photoelectric sensors are based on semiconductor or optoelectronic elements that when irradiated change their impedance or generate a measurable electric signal. The response function of the sensor element depends not only on the intensity of the radiation but also on its wavelengths. The radiation sensors most widely used fit in the first categories, but thanks to the reduction in manufacturing costs and to the increased integration of electronic systems, the use of the photoelectric-type sensors became more interesting. In this work we present a study of the behavior of different optoelectronic sensor elements. It is intended to verify the static response of the elements to the incident radiation. We study the optoelectronic elements using mathematical models that best fit their response as a function of wavelength. As an input to the model, the solar radiation values are generated with a radiative transfer model. We present a modeling of the spectral response sensors of other types in order to compare the behavior of optoelectronic elements with other sensors currently in use.
Resumo:
The paper discusses the evaluation of the uncertainty of a multivariate quantity using the Law of Propagation of Uncertainty defined in the Guide to the Expression of Uncertainty in Measurement (GUM) and a Monte Carlo method according to the GUM’s Supplement 2. The quantity analysed is the electrical impedance, which is not a scalar but a complex quantity. The used measuring method allows the evaluation of the impedance and of its uncertainty in different ways and the corresponding results are presented, compared and discussed. For comparison purposes, results of the impedance uncertainty obtained using the NIST Uncertainty Machine are also presented.
Resumo:
This paper compares the performance of the complex nonlinear least squares algorithm implemented in the LEVM/LEVMW software with the performance of a genetic algorithm in the characterization of an electrical impedance of known topology. The effect of the number of measured frequency points and of measurement uncertainty on the estimation of circuit parameters is presented. The analysis is performed on the equivalent circuit impedance of a humidity sensor.
Resumo:
In recent years, radars have been used in many applications such as precision agriculture and advanced driver assistant systems. Optimal techniques for the estimation of the number of targets and of their coordinates require solving multidimensional optimization problems entailing huge computational efforts. This has motivated the development of sub-optimal estimation techniques able to achieve good accuracy at a manageable computational cost. Another technical issue in advanced driver assistant systems is the tracking of multiple targets. Even if various filtering techniques have been developed, new efficient and robust algorithms for target tracking can be devised exploiting a probabilistic approach, based on the use of the factor graph and the sum-product algorithm. The two contributions provided by this dissertation are the investigation of the filtering and smoothing problems from a factor graph perspective and the development of efficient algorithms for two and three-dimensional radar imaging. Concerning the first contribution, a new factor graph for filtering is derived and the sum-product rule is applied to this graphical model; this allows to interpret known algorithms and to develop new filtering techniques. Then, a general method, based on graphical modelling, is proposed to derive filtering algorithms that involve a network of interconnected Bayesian filters. Finally, the proposed graphical approach is exploited to devise a new smoothing algorithm. Numerical results for dynamic systems evidence that our algorithms can achieve a better complexity-accuracy tradeoff and tracking capability than other techniques in the literature. Regarding radar imaging, various algorithms are developed for frequency modulated continuous wave radars; these algorithms rely on novel and efficient methods for the detection and estimation of multiple superimposed tones in noise. The accuracy achieved in the presence of multiple closely spaced targets is assessed on the basis of both synthetically generated data and of the measurements acquired through two commercial multiple-input multiple-output radars.
Resumo:
In rural and isolated areas without cellular coverage, Satellite Communication (SatCom) is the best candidate to complement terrestrial coverage. However, the main challenge for future generations of wireless networks will be to meet the growing demand for new services while dealing with the scarcity of frequency spectrum. As a result, it is critical to investigate more efficient methods of utilizing the limited bandwidth; and resource sharing is likely the only choice. The research community’s focus has recently shifted towards the interference management and exploitation paradigm to meet the increasing data traffic demands. In the Downlink (DL) and Feedspace (FS), LEO satellites with an on-board antenna array can offer service to numerous User Terminals (UTs) (VSAT or Handhelds) on-ground in FFR schemes by using cutting-edge digital beamforming techniques. Considering this setup, the adoption of an effective user scheduling approach is a critical aspect given the unusually high density of User terminals on the ground as compared to the on-board available satellite antennas. In this context, one possibility is that of exploiting clustering algorithms for scheduling in LEO MU-MIMO systems in which several users within the same group are simultaneously served by the satellite via Space Division Multiplexing (SDM), and then these different user groups are served in different time slots via Time Division Multiplexing (TDM). This thesis addresses this problem by defining a user scheduling problem as an optimization problem and discusses several algorithms to solve it. In particular, focusing on the FS and user service link (i.e., DL) of a single MB-LEO satellite operating below 6 GHz, the user scheduling problem in the Frequency Division Duplex (FDD) mode is addressed. The proposed State-of-the-Art scheduling approaches are based on graph theory. The proposed solution offers high performance in terms of per-user capacity, Sum-rate capacity, SINR, and Spectral Efficiency.
Resumo:
La tesi analizza il modello Input-Output, introdotto da Leontief nel 1936, per studiare la reazione dei sistemi industriali di Germania, Spagna ed Italia alle restrizioni imposte dai governi per limitare la diffusione della pandemia da COVID-19. Si studiano le economie considerando gli scambi tra i settori produttivi intermedi e la domanda finale. La formulazione originale del modello necessita diverse modifiche per descrivere realisticamente le reti di produzione e comunque non è del tutto esaustiva in quanto si ipotizza che la produttività dei sistemi sia sempre tale da soddisfare pienamente la domanda che giunge per il prodotto emesso. Perciò si introduce una distinzione tra le variabili del problema, assumendo che alcune componenti di produzione siano indipendenti dalla richiesta e che altre componenti siano endogene. Le soluzioni di questo sistema tuttavia non sempre risultano appartenenti al dominio di definizione delle variabili. Dunque utilizzando tecniche di programmazione lineare, si osservano i livelli massimi di produzione e domanda corrisposta in un periodo di crisi anche quando i sistemi non raggiungono questa soglia poiché non pienamente operativi. Si propongono diversi schemi di razionamento per distribuire tra i richiedenti i prodotti emessi: 1) programma proporzionale in base alle domande di tutti i richiedenti; 2) programma proporzionale in base alle richieste, con precedenza ai settori intermedi; 3) programma prioritario in cui vengono riforniti i settori intermedi in base alla dimensione dell’ordine; 4) programma prioritario con fornitura totale degli ordini e ordine di consegna casuale. I risultati ottenuti dipendono dal modello di fornitura scelto, dalla dimensione dello shock cui i settori sono soggetti e dalle proprietà della rete industriale, descritta come grafo pesato.
Resumo:
La tomografia ad impedenza elettrica è un metodo di imaging relativamente nuovo che ha suscitato interesse in un ampia gamma di discipline, la sua portabilità, sicurezza e basso costo suggeriscono che potrebbe risolvere diversi problemi clinici. Matematicamente il problema dell'EIT può essere suddiviso in un problema in avanti e uno inverso. Il problema forward, si basa su un'equazione differenziale parziale ellittica, e definisce l'insieme delle tensioni misurate a partire da una distribuzione nota di conducibilità. Il problema inverso è modellato come un problema dei minimi quadrati non lineare, in cui si cerca di ridurre al minimo la differenza tra le tensioni misurate e quelle generate dalla conducibilità ricostruita. Il problema inverso è mal posto e porta ad una soluzione che non dipende con continuità dai dati e quindi le tecniche di ricostruzione richiedono l'introduzione di un termine di regolarizzazione. L'elaborato si concentra sulle strategie algoritmiche per il problema inverso e sulla realizzazione di un'interfaccia grafica in grado di settare i parametri e confrontare velocemente i metodi proposti. Il progetto nella sua visione più ampia vorrebbe utilizzare le strategie algoritmiche proposte per dati ottenuti dal sistema prodotto dall'Università di Bologna nel laboratorio di Ingegneria Cellulare e Molecolare (ICM) di Cesena. I risultati dei test consentono di delineare quali siano gli strumenti migliori per poter arrivare ad una corretta ricostruzione dell'immagine nonché suggerire possibili miglioramenti della configurazione hardware al fine arrivare a risultati sperimentali completi.
Resumo:
Three-dimensional (3D) multicellular spheroids are exceptional in vitro cell models for their ability to accurately mimic real cell-cell interaction processes. However, the challenges in producing well-defined spheroids with controlled size together with the deficiency of techniques to monitor them significantly restrict their use. Herein, a novel device to study spheroid formation in real time is presented. By exploiting electrochemical impedance spectroscopy, a multi-electrode array (MEA) attached to a calcium alginate scaffold is able to monitor the behaviour of 36 different hydrogel wells. The scaffold contains inverted shape pyramidal microwells, which guide the aggregation of cells into spheroids with controlled dimensions. Preliminar studies on calcium alginate, optimisation of fabrication strategy are shown, together with testing of the device in the presence and the absence of the hydrogel. Lastly, the device was tested for its intended aim, i.e. to monitor the formation of a spheroid, proving its potential as an impedance biosensor.
Resumo:
The introduction of spraying procedures to fabricate layer-by-layer (LbL) films has brought new possibilities for the control of molecular architectures and for making the LbL technique compliant with industrial processes. In this study we show that significantly distinct architectures are produced for dipping and spray-LbL films of the same components, which included DODAB/DPPG vesicles. The films differed notably in their thickness and stratified nature. The electrical response of the two types of films to aqueous solutions containing erythrosin was also different. With multidimensional projections we showed that the impedance for the DODAB/DPPG spray-LbL film is more sensitive to changes in concentration, being therefore more promising as sensing units. Furthermore, with surface-enhanced Raman scattering (SERS) we could ascribe the high sensitivity of the LbL films to adsorption of erythrosin.
Resumo:
This study evaluated the corrosion kinetics and surface topography of Ti-6Al-4V alloy exposed to mouthwash solutions (0.12% chlorhexidine digluconate, 0.053% cetylpyridinium chloride and 3% hydrogen peroxide) compared to artificial saliva (pH6.5) (control). Twenty Ti-6Al-4V alloy disks were used and divided into 4 groups (n=5). For the electrochemical assay, standard tests as open circuit potential and electrochemical impedance spectroscopy (EIS) were applied at baseline, 7 and 14days after immersion in the solutions. Scanning electron microscopy, atomic force microscopy and profilometry (average roughness - Ra) were used for surface characterization. Total weight loss of disks was calculated. Data were analyzed by ANOVA and Bonferroni's test (α=0.05). Hydrogen peroxide generated the lowest polarization resistance (Rp) values for all periods (P<0.05). For the capacitance (Cdl), similar results were observed among groups at baseline (P=0.098). For the 7 and 14-day periods, hydrogen peroxide promoted the highest Cdl values (P<0.0001). Hydrogen peroxide promoted expressive superficial changes and greater Ra values than the others (P<0.0001). It could be concluded that solutions containing cetylpyridinium chloride and chlorhexidine digluconate might be the mouthwashes of choice during the post-operatory period of dental implants. However, hydrogen peroxide is counter-indicated in these situations. Further studies evaluating the dynamics of these solutions (tribocorrosion) and immersing the disks in daily cycles (two or three times a day) to mimic a clinical situation closest to the application of mouthwashes in the oral cavity are warranted to prove our results.
Resumo:
Retinal pigment epithelium cells, along with tight junction (TJ) proteins, constitute the outer blood retinal barrier (BRB). Contradictory findings suggest a role for the outer BRB in the pathogenesis of diabetic retinopathy (DR). The aim of this study was to investigate whether the mechanisms involved in these alterations are sensitive to nitrosative stress, and if cocoa or epicatechin (EC) protects from this damage under diabetic (DM) milieu conditions. Cells of a human RPE line (ARPE-19) were exposed to high-glucose (HG) conditions for 24 hours in the presence or absence of cocoa powder containing 0.5% or 60.5% polyphenol (low-polyphenol cocoa [LPC] and high-polyphenol cocoa [HPC], respectively). Exposure to HG decreased claudin-1 and occludin TJ expressions and increased extracellular matrix accumulation (ECM), whereas levels of TNF-α and inducible nitric oxide synthase (iNOS) were upregulated, accompanied by increased nitric oxide levels. This nitrosative stress resulted in S-nitrosylation of caveolin-1 (CAV-1), which in turn increased CAV-1 traffic and its interactions with claudin-1 and occludin. This cascade was inhibited by treatment with HPC or EC through δ-opioid receptor (DOR) binding and stimulation, thereby decreasing TNF-α-induced iNOS upregulation and CAV-1 endocytosis. The TJ functions were restored, leading to prevention of paracellular permeability, restoration of resistance of the ARPE-19 monolayer, and decreased ECM accumulation. The detrimental effects on TJs in ARPE-19 cells exposed to DM milieu occur through a CAV-1 S-nitrosylation-dependent endocytosis mechanism. High-polyphenol cocoa or EC exerts protective effects through DOR stimulation.
Resumo:
Condensation processes are of key importance in nature and play a fundamental role in chemistry and physics. Owing to size effects at the nanoscale, it is conceptually desired to experimentally probe the dependence of condensate structure on the number of constituents one by one. Here we present an approach to study a condensation process atom-by-atom with the scanning tunnelling microscope, which provides a direct real-space access with atomic precision to the aggregates formed in atomically defined 'quantum boxes'. Our analysis reveals the subtle interplay of competing directional and nondirectional interactions in the emergence of structure and provides unprecedented input for the structural comparison with quantum mechanical models. This approach focuses on-but is not limited to-the model case of xenon condensation and goes significantly beyond the well-established statistical size analysis of clusters in atomic or molecular beams by mass spectrometry.