884 resultados para Infection by inhalation


Relevância:

40.00% 40.00%

Publicador:

Resumo:

IL-17 is believed to be important for protection against extracellular pathogens, where clearance is dependent on neutrophil recruitment and local activation of epithelial cell defences. However, the role of IL-17 in protection against intracellular pathogens such as Chlamydia is less clear. We have compared (i) the course of natural genital tract C. muridarum infection, (ii) the development of oviduct pathology and (iii) the development of vaccine-induced immunity against infection in wild type (WT) BALB/c and IL-17 knockout mice (IL-17-/-) to determine if IL-17-mediated immunity is implicated in the development of infection-induced pathology and/or protection. Both the magnitude and duration of genital infection was significantly reduced in IL-17-/- mice compared to BALB/c. Similarly, hydrosalpinx was also greatly reduced in IL-17-/- mice and this correlated with reduced neutrophil and macrophage infiltration of oviduct tissues. Matrix metalloproteinase (MMP) 9 and MMP2 were increased in WT oviducts compared to IL-17-/- animals at day 7 post-infection. In contrast, oviducts from IL-17-/- mice contained higher MMP9 and MMP2 at day 21. Infection also elicited higher levels of Chlamydia-neutralizing antibody in serum of IL-17-/- mice than WT mice. Following intranasal immunization with C. muridarum Major Outer Membrane Protein (MOMP) and cholera toxin plus CpG adjuvants, significantly higher levels of chlamydial MOMP-specific IgG and IgA were found in serum and vaginal washes of IL-17-/- mice. T cell proliferation and IFNγ production by splenocytes was greater in WT animals following in vitro re-stimulation, however vaccination was only effective at reducing infection in WT, not IL-17-/- mice. Intranasal or transcutaneous immunization protected WT but not IL-17-/- mice against hydrosalpinx development. Our data show that in the absence of IL-17, the severity of C. muridarum genital infection and associated oviduct pathology are significantly attenuated, however neither infection or pathology can be reduced further by vaccination protocols that effectively protect WT mice.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Most vaccines developed against Chlamydia using animal models provide partial protection against a genital tract infection. However, protection against the oviduct pathology associated with infertility is highly variable and often has no defining immunological correlate. When comparing two adjuvants (CTA1-DD and a combination of Cholera toxin plus CpG- oligodeoxynucleotide–CT/CpG) combined with the chlamydial major outer membrane protein (MOMP) antigen and delivered via the intranasal (IN), sublingual (SL) or transcutaneous (TC) routes, we identified two vaccine groups with contrasting outcomes following infection. SL immunization with MOMP/CTA1-DD induced a 70% reduction in the incidence of oviduct pathology, without significantly altering the course of infection. Conversely, IN immunization with MOMP/CT/CpG prevented an ascending infection, but not the oviduct pathology. This anomaly presented a unique opportunity to study the mechanisms by which vaccines can prevent oviduct pathology, other than by controlling the infection. The IL-17 signaling in the oviducts was found to associate with both the enhancement of immunity to infection and the development of oviduct pathology. This conflicting role of IL-17 may provide some explanation for the discordance in protection between infection and disease and suggests that controlling immunopathology, as opposed to the rapid eradication of the infection, may be essential for an effective human chlamydial vaccine that prevents infertility.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Metarhizium anisopliae is a naturally occurring cosmopolitan fungus infecting greyback canegrubs (Dermolepida albohirtum). The main molecular factors involved in the complex interactions occurring between the greyback canegrubs and M. anisopliae (FI-1045) were investigated by comparing the proteomes of healthy canegrubs, canegrubs infected with Metarhizium and fungus only. Differentially expressed proteins from the infected canegrubs were subjected to mass spectrometry to search for pathogenicity related proteins. Immune-related proteins of canegrubs identified in this study include cytoskeletal proteins (actin), cell communication proteins, proteases and peptidases. Fungal proteins identified include metalloproteins, acyl-CoA, cyclin proteins and chorismate mutase. Comparative proteome analysis provided a view into the cellular reactions triggered in the canegrub in response to the fungal infection at the onset of biological control.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background. Escherichia coli O25b:H4-ST131 represents a predominant clone of multidrug-resistant uropathogens currently circulating worldwide in hospitals and the community. Urinary tract infections (UTIs) caused by E. coli ST131 are typically associated with limited treatment options and are often recurrent. Methods. Using established mouse models of acute and chronic UTI, we mapped the pathogenic trajectory of the reference E. coli ST131 UTI isolate, strain EC958. Results. We demonstrated that E. coli EC958 can invade bladder epithelial cells and form intracellular bacterial communities early during acute UTI. Moreover, E. coli EC958 persisted in the bladder and established chronic UTI. Prophylactic antibiotic administration failed to prevent E. coli EC958–mediated UTI. However, 1 oral dose of a small-molecular-weight compound that inhibits FimH, the type 1 fimbriae adhesin, significantly reduced bacterial colonization of the bladder and prevented acute UTI. Treatment of chronically infected mice with the same FimH inhibitor lowered their bladder bacterial burden by >1000-fold. Conclusions. In this study, we provide novel insight into the pathogenic mechanisms used by the globally disseminated E. coli ST131 clone during acute and chronic UTI and establish the potential of FimH inhibitors as an alternative treatment against multidrug-resistant E. coli.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We performed a contingent valuation survey to elicit the opportunity cost of bed-days consumed by healthcare-associated infections in 11 European hospitals. The opportunity cost of a bed-day was significantly lower than the accounting cost; median values were i72 and i929, respectively (P ! .001). Accounting methods overestimate the opportunity cost of bed-days...

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The structures and manner with which Pseudocercospora macadamiae penetrates, colonises and proliferates from the pericarp of macadamia fruit was studied using scanning electron microscopy and fluorescence light microscopy. Germ tubes arising from conidia penetrated open stomata within 20 h of inoculation, without observation of specialised infection structures such as appressoria. Colonisation of the pericarp was intercellular, without observation of specialised intracellular infection structures such as haustoria, and was complete from the epidermis to the mesocarp. The fungus proliferated at the epidermis by the formation of conidiophores and conidia on substomatal and protuberant subepidermal stromata. These structures were not observed on the mesocarp surface. The onset of visual husk spot symptoms coincided with an increase in pathogen biomass on the pericarp surface. The progression of symptoms from tan-coloured spots to larger red-brown lesions coincided with the production of conidiophores from substomatal and protuberant subepidermal stromata. The darker the colour of the husk spot lesion, the more frequently protuberant subepidermal stromata were observed. These findings are discussed in the context of observation of other cercosporoid fungi.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Pseudocercospora macadamiae causes husk spot of macadamia. Husk spot control would be improved by verifying the stages in fruit development susceptible to infection, and determine some of the climatic conditions likely to lead to high disease pressure periods in the field. Our results showed that the percent conidia germination and growth of germ tubes and mycelia of P. macadamiae were greatest at 26 degrees C, with better conidia germination associated with high relative humidity and free water. The exposure of match-head-sized and pea-sized fruit stages to natural P. macadamiae inoculum in the field led to 2 5-fold increases in husk spot incidence, and up to 8.5-fold increases in premature abscission, compared with unexposed fruit. Exposure of fruit stages later than match-head-sized and pea-sized fruit generally caused no further increases in disease incidence or premature abscission. Climatic conditions were found to have a strong influence on the behaviour of P. macadamiae, the host, oil accumulation, and the subsequent impact of husk spot on premature abscission. Our findings suggest that fungicide application should target fruit at the match-head-sized stage of development in order to best reduce yield losses, particularly in seasons where oil accumulation in fruit is prolonged and climatic conditions are optimal for P. macadamiae.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A 5-year-old Australian stock horse in Monto, Queensland, Australia, developed neurological signs and was euthanized after a 6-day course of illness. Histological examination of the brain and spinal cord revealed moderate to severe subacute, nonsuppurative encephalomyelitis. Sections of spinal cord stained positively in immunohistochemistry with a flavivirus-specific monoclonal antibody. Reverse transcription polymerase chain reaction assay targeting the envelope gene of flavivirus yielded positive results from brain, spinal cord, cerebrospinal fluid, and facial nerve. A flavivirus was isolated from the cerebrum and spinal cord. Nucleotide sequences obtained from amplicons from both tissues and virus isolated in cell culture were compared with those in GenBank and had 96-98% identity with Murray Valley encephalitis virus. The partial envelope gene sequence of the viral isolate clustered into genotype 1 and was most closely related to a previous Queensland isolate.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The ubiquitous fungal pathogen Macrophomina phaseolina is best known as causing charcoal rot and premature death when host plants are subject to post-flowering stress. Overseas reports of M.phaseolina causing a rapid rot during the sprouting of Australian mungbean seed resulted in an investigation of the possible modes of infection of seed. Isolations from serial portions of 10 mungbean plants naturally infected with the pathogen revealed that on most plants there were discrete portions of infected tissue separated by apparently healthy tissue. The results from these studies, together with molecular analysis of isolates collected from infected tissue on two of the plants, suggested that aerial infection of aboveground parts by different isolates is common. Inoculations of roots and aboveground parts of mungbean plants at nine temperaturexsoil moisture incubation combinations and of detached green pods strongly supported the concept that seed infection results from infection of pods by microsclerotia, rather than from hyphae growing systemically through the plant after root or stem infection. This proposal is reinforced by anecdotal evidence that high levels of seed infection are common when rainfall occurs during pod fill, and by the isolation of M.phaseolina from soil peds collected on pods of mungbean plants in the field. However, other experiments showed that when inoculum was placed within 130mm of a green developing pod and a herbicide containing paraquat and diquat was sprayed on the inoculated plants, M.phaseolina was capable of some systemic growth from vegetative tissue into the pods and seeds.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Since 2007, 96 wild Queensland groupers, Epinephelus lanceolatus, (Bloch), have been found dead in NE Australia. In some cases, Streptococcus agalactiae (Group B Streptococcus, GBS) was isolated. At present, a GBS isolate from a wild grouper case was employed in experimental challenge trials in hatchery-reared Queensland grouper by different routes of exposure. Injection resulted in rapid development of clinical signs including bilateral exophthalmia, hyperaemic skin or fins and abnormal swimming. Death occurred in, and GBS was re-isolated from, 98% fish injected and was detected by PCR in brain, head kidney and spleen from all fish, regardless of challenge dose. Challenge by immersion resulted in lower morbidity with a clear dose response. Whilst infection was established via oral challenge by admixture with feed, no mortality occurred. Histology showed pathology consistent with GBS infection in organs examined from all injected fish, from fish challenged with medium and high doses by immersion, and from high-dose oral challenge. These experimental challenges demonstrated that GBS isolated from wild Queensland grouper reproduced disease in experimentally challenged fish and resulted in pathology that was consistent with that seen in wild Queensland grouper infected with S. agalactiae.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Since 2007, 96 wild Queensland groupers, Epinephelus lanceolatus, (Bloch), have been found dead in NE Australia. In some cases, Streptococcus agalactiae (Group B Streptococcus, GBS) was isolated. At present, a GBS isolate from a wild grouper case was employed in experimental challenge trials in hatchery-reared Queensland grouper by different routes of exposure. Injection resulted in rapid development of clinical signs including bilateral exophthalmia, hyperaemic skin or fins and abnormal swimming. Death occurred in, and GBS was re-isolated from, 98% fish injected and was detected by PCR in brain, head kidney and spleen from all fish, regardless of challenge dose. Challenge by immersion resulted in lower morbidity with a clear dose response. Whilst infection was established via oral challenge by admixture with feed, no mortality occurred. Histology showed pathology consistent with GBS infection in organs examined from all injected fish, from fish challenged with medium and high doses by immersion, and from high-dose oral challenge. These experimental challenges demonstrated that GBS isolated from wild Queensland grouper reproduced disease in experimentally challenged fish and resulted in pathology that was consistent with that seen in wild Queensland grouper infected with S. agalactiae.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Plus-stranded (plus) RNA viruses multiply within a cellular environment as tightly integrated units and rely on the genetic information carried within their genomes for multiplication and, hence, persistence. The minimal genomes of plus RNA viruses are unable to encode the molecular machineries that are required for virus multiplication. This sets requisites for the virus, which must form compatible interactions with host components during multiplication to successfully utilize primary metabolites as building blocks or metabolic energy, and to divert the protein synthesis machinery for production of viral proteins. In fact, the emerging picture of a virus-infected cell displays tight integration with the virus, from simple host and virus protein interactions through to major changes in the physiological state of the host cell. This study set out to develop a method for the identification of host components, mainly host proteins, that interact with proteins of Potato virus A (PVA; Potyvirus) during infection. This goal was approached by developing affinity-tag based methods for the purification of viral proteins complexed with associated host proteins from infected plants. Using this method, host membrane-associated viral ribonucleoprotein (RNP) complexes were obtained, and several host and viral proteins could be identified as components of these complexes. One of the host proteins identified using this strategy was a member of the heat shock protein 70 (HSP70) family, and this protein was chosen for further analysis. To enable the analysis of viral gene expression, a second method was developed based on Agrobacterium-mediated virus genome delivery into plant cells, and detection of virally expressed Renilla luciferase (RLUC) as a quantitative measure of viral gene expression. Using this method, it was observed that down-regulation of HSP70 caused a PVA coat protein (CP)-mediated defect associated with replication. Further experimentation suggested that CP can inhibit viral gene expression and that a distinct translational activity coupled to replication, referred to as replication-associated translation (RAT), exists. Unlike translation of replication-deficient viral RNA, RAT was dependent on HSP70 and its co-chaperone CPIP. HSP70 and CPIP together regulated CP turnover by promoting its modification by ubiquitin. Based on these results, an HSP70 and CPIP-driven mechanism that functions to regulate CP during viral RNA replication and/or translation is proposed, possibly to prevent premature particle assembly caused by CP association with viral RNA.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background. Interferon gamma (IFN-gamma) increases the expression of multiple genes and responses; however, the mechanisms by which IFN-gamma downmodulates cellular responses is not well understood. In this study, the repression of CCL3 and CCL4 by IFN-gamma and nitric oxide synthase 2 (NOS2) in macrophages and upon Salmonella typhimurium infection of mice was investigated. Methods. Small molecule regulators and adherent peritoneal exudates cells (A-PECs) from Nos2(-/-)mice were used to identify the contribution of signaling molecules during IFN-gamma-mediated in vitro regulation of CCL3, CCL4, and CXCL10. In addition, infection of bone marrow-derived macrophages (BMDMs) and mice (C57BL/6, Ifn-gamma(-/), and Nos2(-/-)) with S. typhimurium were used to gain an understanding of the in vivo regulation of these chemokines. Results. IFN-gamma repressed CCL3 and CCL4 in a signal transducer and activator of transcription 1 (STAT1)-NOS2-p38 mitogen activated protein kinase (p38MAPK)-activating transcription factor 3 (ATF3) dependent pathway in A-PECs. Also, during intracellular replication of S. typhimurium in BMDMs, IFN-gamma and NOS2 repressed CCL3 and CCL4 production. The physiological roles of these observations were revealed during oral infection of mice with S. typhimurium, wherein endogenous IFN-gamma and NOS2 enhanced serum amounts of tumor necrosis factor alpha and CXCL10 but repressed CCL3 and CCL4. Conclusions. This study sheds novel mechanistic insight on the regulation of CCL3 and CCL4 in mouse macrophages and during S. typhimurium oral infection.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Japanese encephalitis virus (JEV) is a single stranded RNA virus that infects the central nervous system leading to acute encephalitis in children. Alterations in brain endothelial cells have been shown to precede the entry of this flavivirus into the brain, but infection of endothelial cells by JEV and their consequences are still unclear. Productive JEV infection was established in human endothelial cells leading to IFN-beta and TNF-alpha production. The MHC genes for HLA-A, -B, -C and HLA-E antigens were upregulated in human brain microvascular endothelial cells, the endothelial-like cell line, ECV 304 and human foreskin fibroblasts upon JEV infection. We also report the release/shedding of soluble HLA-E (sHLA-E) from JEV infected human endothelial cells for the first time. This shedding of sHLA-E was blocked by an inhibitor of matrix metalloproteinases (MMP). In addition, MMP-9, a known mediator of HLA solubilisation was upregulated by JEV. In contrast, human fibroblasts showed only upregulation of cell-surface HLA-E. Addition of UV inactivated JEV-infected cell culture supernatants stimulated shedding of sHLA-E from uninfected ECV cells indicating a role for soluble factors/cytokines in the shedding process. Antibody mediated neutralization of TNF-alpha as well as IFNAR receptor together not only resulted in inhibition of sHLA-E shedding from uninfected cells, it also inhibited HLA-E and MMP-9 gene expression in JEV-infected cells. Shedding of sHLA-E was also observed with purified TNF-alpha and IFN-beta as well as the dsRNA analog, poly (I:C). Both IFN-beta and TNF-alpha further potentiated the shedding when added together. The role of soluble MHC antigens in JEV infection is hitherto unknown and therefore needs further investigation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Productive infection of human amniotic and endothelial cell lines with Japanese encephalitis virus (JEV) was established leading to the induction of NF kappa B and HLA-F, a non-classical MHC molecule. Induction of the HLA-F gene and protein in JEV-infected cells was shown to be NF kappa B dependent since it was blocked by inhibitors of NF kappa B activation. ShRNA targeting lentivirus-mediated stable knockdown of the p65 subunit of NF kappa B inhibited JEV-mediated induction of HLA-F both in the amniotic cell line, AV-3 as well as the human brain microendothelial cell line, HBMEC. The induction of HLA-F by treatment of AV-3 with TNF-alpha was also inhibited by ShRNA mediated knockdown of NF kappa B. TNF-alpha treatment of HEK293T cells that were transfected with reporter plasmids under the control of HLA-F enhancer A elements resulted in significant transactivation of the luciferase reporter gene. NF kappa B-mediated induction of HLA-F following JEV infection and TNF-alpha exposure is being suggested for the first time. (C) 2014 Elsevier Inc. All rights reserved.