958 resultados para Image recognition


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Peroxisome proliferator activated receptors are ligand activated transcription factors belonging to the nuclear hormone receptor superfamily. Three cDNAs encoding such receptors have been isolated from Xenopus laevis (xPPAR alpha, beta, and gamma). Furthermore, the gene coding for xPPAR beta has been cloned, thus being the first member of this subfamily whose genomic organization has been solved. Functionally, xPPAR alpha as well as its mouse and rat homologs are thought to play an important role in lipid metabolism due to their ability to activate transcription of a reporter gene through the promoter of the acyl-CoA oxidase (ACO) gene. ACO catalyzes the rate limiting step in the peroxisomal beta-oxidation of fatty acids. Activation is achieved by the binding of xPPAR alpha on a regulatory element (DR1) found in the promoter region of this gene, xPPAR beta and gamma are also able to recognize the same type of element and are, as PPAR alpha, able to form heterodimers with retinoid X receptor. All three xPPARs appear to be activated by synthetic peroxisome proliferators as well as by naturally occurring fatty acids, suggesting that a common mode of action exists for all the members of this subfamily of nuclear hormone receptors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When dealing with multi-angular image sequences, problems of reflectance changes due either to illumination and acquisition geometry, or to interactions with the atmosphere, naturally arise. These phenomena interplay with the scene and lead to a modification of the measured radiance: for example, according to the angle of acquisition, tall objects may be seen from top or from the side and different light scatterings may affect the surfaces. This results in shifts in the acquired radiance, that make the problem of multi-angular classification harder and might lead to catastrophic results, since surfaces with the same reflectance return significantly different signals. In this paper, rather than performing atmospheric or bi-directional reflection distribution function (BRDF) correction, a non-linear manifold learning approach is used to align data structures. This method maximizes the similarity between the different acquisitions by deforming their manifold, thus enhancing the transferability of classification models among the images of the sequence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this essay is to reflect on a possible relation between entropy and emergence. A qualitative, relational approach is followed. We begin by highlighting that entropy includes the concept of dispersal, relevant to our enquiry. Emergence in complex systems arises from the coordinated behavior of their parts. Coordination in turn necessitates recognition between parts, i.e., information exchange. What will be argued here is that the scope of recognition processes between parts is increased when preceded by their dispersal, which multiplies the number of encounters and creates a richer potential for recognition. A process intrinsic to emergence is dissolvence (aka submergence or top-down constraints), which participates in the information-entropy interplay underlying the creation, evolution and breakdown of higher-level entities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The goal of this work is to develop a method to objectively compare the performance of a digital and a screen-film mammography system in terms of image quality. The method takes into account the dynamic range of the image detector, the detection of high and low contrast structures, the visualisation of the images and the observer response. A test object, designed to represent a compressed breast, was constructed from various tissue equivalent materials ranging from purely adipose to purely glandular composition. Different areas within the test object permitted the evaluation of low and high contrast detection, spatial resolution and image noise. All the images (digital and conventional) were captured using a CCD camera to include the visualisation process in the image quality assessment. A mathematical model observer (non-prewhitening matched filter), that calculates the detectability of high and low contrast structures using spatial resolution, noise and contrast, was used to compare the two technologies. Our results show that for a given patient dose, the detection of high and low contrast structures is significantly better for the digital system than for the conventional screen-film system studied. The method of using a test object with a large tissue composition range combined with a camera to compare conventional and digital imaging modalities can be applied to other radiological imaging techniques. In particular it could be used to optimise the process of radiographic reading of soft copy images.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present MBIS (Multivariate Bayesian Image Segmentation tool), a clustering tool based on the mixture of multivariate normal distributions model. MBIS supports multichannel bias field correction based on a B-spline model. A second methodological novelty is the inclusion of graph-cuts optimization for the stationary anisotropic hidden Markov random field model. Along with MBIS, we release an evaluation framework that contains three different experiments on multi-site data. We first validate the accuracy of segmentation and the estimated bias field for each channel. MBIS outperforms a widely used segmentation tool in a cross-comparison evaluation. The second experiment demonstrates the robustness of results on atlas-free segmentation of two image sets from scan-rescan protocols on 21 healthy subjects. Multivariate segmentation is more replicable than the monospectral counterpart on T1-weighted images. Finally, we provide a third experiment to illustrate how MBIS can be used in a large-scale study of tissue volume change with increasing age in 584 healthy subjects. This last result is meaningful as multivariate segmentation performs robustly without the need for prior knowledge.