936 resultados para INTESTINAL GUANYLATE-CYCLASE
Resumo:
Vertebrate immune systems contain T cells bearing either alpha beta or gamma delta T-cell antigen receptors (TCRs). alpha beta T cells perform all well-characterized T-cell effector functions, while the biological functions of gamma delta + cells remain unclear. Of particular interest is the role of gamma delta + cells during epithelial infections, since gamma delta + cells are commonly abundant within epithelia. Eimeria spp. are intracellular protozoa that infect epithelia of most vertebrates, causing coccidiosis. This study shows that in response to Eimeria vermiformis, mice lacking alpha beta T cells display defects in protective immunity, while mice lacking gamma delta + cells display exaggerated intestinal damage, apparently due to a failure to regulate the consequences of the alpha beta T cell response. An immuno-downregulatory role during infection, and during autoimmune disease, may be a general one for gamma delta + cells.
Resumo:
The junction-associated protein zonula occludens-1 (ZO-1) is a member of a family of membrane-associated guanylate kinase homologues thought to be important in signal transduction at sites of cell-cell contact. We present evidence that under certain conditions of cell growth, ZO-1 can be detected in the nucleus. Two different antibodies against distinct portions of the ZO-1 polypeptide reveal nuclear staining in subconfluent, but not confluent, cell cultures. An exogenously expressed, epitope-tagged ZO-1 can also be detected in the nuclei of transfected cells. Nuclear accumulation can be stimulated at sites of wounding in cultured epithelial cells, and immunoperoxidase detection of ZO-1 in tissue sections of intestinal epithelial cells reveals nuclear labeling only along the outer tip of the villus. These results suggest that the nuclear localization of ZO-1 is inversely related to the extent and/or maturity of cell contact. Since cell-cell contacts are specialized sites for signaling pathways implicated in growth and differentiation, we suggest that the nuclear accumulation of ZO-1 may be relevant for its suggested role in membrane-associated guanylate kinase homologue signal transduction.
Resumo:
Nocturnal melatonin production in the pineal gland is under the control of norepinephrine released from superior cervical ganglia afferents in a rhythmic manner, and of cyclic AMP. Cyclic AMP increases the expression of serotonin N-acetyltransferase and of inducible cAMP early repressor that undergo circadian oscillations crucial for the maintenance and regulation of the biological clock. In the present study, we demonstrate a circadian pattern of expression of the calcium/calmodulin activated adenylyl cyclase type 1 (AC1) mRNA in the rat pineal gland. In situ hybridization revealed that maximal AC1 mRNA expression occurred at midday (12:00-15:00), with a very low signal at night (0:00-3:00). We established that this rhythmic pattern was controlled by the noradrenergic innervation of the pineal gland and by the environmental light conditions. Finally, we observed a circadian responsiveness of the pineal AC activity to calcium/calmodulin, with a lag due to the processing of the protein. At midday, AC activity was inhibited by calcium (40%) either in the presence or absence of calmodulin, while at night the enzyme was markedly (3-fold) activated by the calcium-calmodulin complex. These findings suggest (i) the involvement of AC1 acting as the center of a gating mechanism, between cyclic AMP and calcium signals, important for the fine tuning of the pineal circadian rhythm; and (ii) a possible regulation of cyclic AMP on the expression of AC1 in the rat pineal gland.
Resumo:
Mutations of the human adenomatosis polyposis coli (APC) gene are associated with the development of familial as well as sporadic intestinal neoplasia. To examine the in vivo function of APC, 129/Sv embryonic stem (ES) cells were transfected with DNA encoding the wild-type human protein under the control of a promoter that is active in all four of the small intestine's principal epithelial lineages during their migration-associated differentiation. ES-APC cells were then introduced into C57BL/6-ROSA26 blastocysts. Analyses of adult B6-ROSA26<-->129/Sv-APC chimeric mice revealed that forced expression of APC results in markedly disordered cell migration. When compared with the effects of forced expression of E-cadherin, the data suggest that APC-catenin and E-cadherin-catenin complexes have opposing effects on intestinal epithelial cell movement/adhesiveness; augmentation of E-cadherin-beta-catenin complexes produces a highly ordered, "adhesive" migration, whereas augmentation of APC-beta-catenin complexes produces a disordered, nonadhesive migratory phenotype. We propose that APC mutations may promote tumorigenesis by increasing the relative activity of cadherin-catenin complexes, resulting in enhanced adhesiveness and functional anchorage of initiated cells within the intestinal crypt. Our studies also indicate that chimeric mice generated from B6-ROSA26 blastocysts and genetically manipulated ES cells should be useful for auditing gene function in the gastrointestinal tract and in other tissues.
Resumo:
Giardia lamblia, like most human intestinal parasitic protozoa, sustains fundamental morphological and biochemical changes to survive outside the small intestine of its mammalian host by differentiating into an infective cyst. However, the stimulus that triggers this differentiation remains totally undefined. In this work, we demonstrate the induction of cyst formation in vitro when trophozoites are starved for cholesterol. Expression of cyst wall proteins was detected within encystation-specific secretory vesicles 90 min after the cells were placed in lipoprotein-deficient TYI-S-33 medium. Four cloned lines derived from two independent Giardia isolates were tested, and all formed cysts similarly. Addition of cholesterol, low density or very low density lipoproteins to the lipoprotein-deficient culture medium, inhibited the expression of cyst wall proteins, the generation of encystation-specific vesicles, and cyst wall biogenesis. In contrast, high density lipoproteins, phospholipids, bile salts, or fatty acids had little or no effect. These results indicate that cholesterol starvation is necessary and sufficient for the stimulation of Giardia encystation in vitro and, likely, in the intestine of mammalian hosts.
Resumo:
Injury, inflammation, or resection of the small intestine results in severe compromise of intestinal function. Nevertheless, therapeutic strategies for enhancing growth and repair of the intestinal mucosal epithelium are currently not available. We demonstrate that nude mice bearing subcutaneous proglucagon-producing tumors exhibit marked proliferation of the small intestinal epithelium. The factor responsible for inducing intestinal proliferation was identified as glucagon-like peptide 2 (GLP-2), a 33-aa peptide with no previously ascribed biological function. GLP-2 stimulated crypt cell proliferation and consistently induced a marked increase in bowel weight and villus growth of the jejunum and ileum that was evident within 4 days after initiation of GLP-2 administration. These observations define a novel biological role for GLP-2 as an intestinal-derived peptide stimulator of small bowel epithelial proliferation.
Resumo:
Regulation of gene expression by zinc is well established, especially through the metal response elements of the metallothionein genes; however, most other aspects of the functions of zinc in gene expression remain unknown. We have looked for intestinal mRNAs that are regulated by dietary zinc status. Using the reverse transcriptase-PCR method of mRNA differential display, we compared intestinal mRNA from rats that were maintained for 18 days in one of three dietary groups: zinc-deficient, zinc-adequate, and pair-fed zinc-adequate. At the end of this period, total RNA was prepared from the intestine and analyzed by mRNA differential display. Under these conditions, only differentially displayed cDNA bands that varied in the zinc-deficient group, relative to the zinc-adequate groups, were selected. Utilizing two anchored oligo-dT3' PCR primers and a total of 27 arbitrary decamers as 5' PCR primers, our results yielded 47 differentially displayed cDNA bands from intestinal RNA. Thirty were increased in zinc deficiency, and 17 were decreased. Nineteen bands were subcloned and sequenced. Eleven of these were detectable on Northern blots, of which four were confirmed as regulated. Three of these have homology to known genes: cholecystokinin, uroguanylin, and ubiquinone oxidoreductase. The fourth is a novel sequence as it has no significant homology in GenBank. The remainder of those cloned included novel sequences, as well as matches to reported expressed sequence tags, and functionally identified genes. Further characterization of the regulated sequences identified here will show whether they are primary or secondary effects of zinc deficiency.
Resumo:
Adenylyl cyclase activity can be reconstituted by simple mixture of the two cytosolic domains of the enzyme after their independent synthesis in Escherichia coli. We have synthesized and purified the C1a domain of type I adenylyl cyclase and the C2 domain of the type II enzyme to assess their interactions with each other and with the activators Gsalpha and forskolin. In the absence of an activator, the fragments associate with low affinity and display low catalytic activity. This basal activity can be stimulated more than 100-fold by either forskolin or activated Gsalpha. Further, the addition of these activators increases the apparent affinity of the fragments for each other. Stimulation of catalysis by Gsalpha and forskolin is synergistic. These data suggest a model wherein either Gsalpha or forskolin enhances association of the other activator with adenylyl cyclase, as well as facilitating the interaction between the C1 and C2 domains of the enzyme.
Resumo:
Disruption of guanylyl cyclase-A (GC-A) results in mice displaying an elevated blood pressure, which is not altered by high or low dietary salt. However, atrial natriuretic peptide (ANP), a proposed ligand for GC-A, has been suggested as critical for the maintenance of normal blood pressure during high salt intake. In this report, we show that infusion of ANP results in substantial natriuresis and diuresis in wild-type mice but fails to cause significant changes in sodium excretion or urine output in GC-A-deficient mice. ANP, therefore, appears to signal through GC-A in the kidney. Other natriuretic/diuretic factors could be released from the heart. Therefore, acute volume expansion was used as a means to cause release of granules from the atrium of the heart. That granule release occurred was confirmed by measurements of plasma ANP concentrations, which were markedly elevated in both wild-type and GC-A-null mice. After volume expansion, urine output as well as urinary sodium and cyclic GMP excretion increased rapidly and markedly in wild-type mice, but the rapid increases were abolished in GC-A-deficient animals. These results strongly suggest that natriuretic/diuretic factors released from the heart function exclusively through GC-A.
Resumo:
More than 30 years ago, Brambell published the hypothesis bearing his name [Brambell, F. W. R., Hemmings, W. A. & Morris, 1. C. (1964) Nature (London) 203, 1352-1355] that remains as the cornerstone for thinking on IgG catabolism. To explain the long survival of IgG relative to other plasma proteins and its pattern of increased fractional catabolism with high concentrations of IgG, Brambell postulated specific IgG "protection receptors" (FcRp) that would bind IgG in pinocytic vacuoles and redirect its transport to the circulation; when the FcRp was saturated, the excess unbound IgG then would pass to unrestricted lysosomal catabolism. Brambell subsequently postulated the neonatal gut transport receptor (FcRn) and showed its similar saturable character. FcRn was recently cloned but FcRp has not been identified. Using a genetic knockout that disrupts the FcRn and intestinal IgG transport, we show that this lesion also disrupts the IgG protection receptor, supporting the identity of these two receptors. IgG catabolism was 10-fold faster and IgG levels were correspondingly lower in mutant than in wild-type mice, whereas IgA was the same between groups, demonstrating the specific effects on the IgG system. Disruption of the FcRp in the mutant mice was also shown to abrogate the classical pattern of decreased IgG survival with higher IgC concentration. Finally, studies in normal mice with monomeric antigen-antibody complexes showed differential catabolism in which antigen dissociates in the endosome and passes to the lysosome, whereas the associated antibody is returned to circulation; in mutant mice, differential catabolism was lost and the whole complex cleared at the same accelerated rate as albumin, showing the central role of the FcRp to the differential catabolism mechanism. Thus, the same receptor protein that mediates the function of the FcRn transiently in the neonate is shown to have its functionally dominant expression as the FcRp throughout life, resolving a longstanding mystery of the identity of the receptor for the protection of IgG. This result also identifies an important new member of the class of recycling surface receptors and enables the design of protein adaptations to exploit this mechanism to improve survivals of other therapeutic proteins in vivo.
Resumo:
Excitatory amino acid toxicity, resulting from overactivation of N-methyl-D-aspartate (NMDA) glutamate receptors, is a major mechanism of neuronal cell death in acute and chronic neurological diseases. We have investigated whether excitotoxicity may occur in peripheral organs, causing tissue injury, and report that NMDA receptor activation in perfused, ventilated rat lungs triggered acute injury, marked by increased pressures needed to ventilate and perfuse the lung, and by high-permeability edema. The injury was prevented by competitive NMDA receptor antagonists or by channel-blocker MK-801, and was reduced in the presence of Mg2+. As with NMDA toxicity to central neurons, the lung injury was nitric oxide (NO) dependent: it required L-arginine, was associated with increased production of NO, and was attenuated by either of two NO synthase inhibitors. The neuropeptide vasoactive intestinal peptide and inhibitors of poly(ADP-ribose) polymerase also prevented this injury, but without inhibiting NO synthesis, both acting by inhibiting a toxic action of NO that is critical to tissue injury. The findings indicate that: (i) NMDA receptors exist in the lung (and probably elsewhere outside the central nervous system), (ii) excessive activation of these receptors may provoke acute edematous lung injury as seen in the "adult respiratory distress syndrome," and (iii) this injury can be modulated by blockade of one of three critical steps: NMDA receptor binding, inhibition of NO synthesis, or activation of poly(ADP-ribose) polymerase.
Resumo:
Cholecystokinin (CCK) secretion in rats and humans is inhibited by pancreatic proteases and bile acids in the intestine. It has been hypothesized that the inhibition of CCK release caused by pancreatic proteases is due to proteolytic inactivation of a CCK-releasing peptide present in intestinal secretion. To purify the putative luminal CCK-releasing factor (LCRF), intestinal secretions were collected by perfusing a modified Thiry-Vella fistula of jejunum in conscious rats. From these secretions, the peptide was concentrated by ultrafiltration followed by low-pressure reverse-phase chromatography and purified by reverse-phase high-pressure liquid chromatography. Purity was confirmed by high-performance capillary electrophoresis. Fractions were assayed for CCK-releasing activity by their ability to stimulate pancreatic protein secretion when infused into the proximal small intestine of conscious rats. Partially purified fractions strongly stimulated both pancreatic secretion and CCK release while CCK receptor blockade abolished the pancreatic response. Amino acid analysis and mass spectral analysis showed that the purified peptide is composed of 70-75 amino acid residues and has a mass of 8136 Da. Microsequence analysis of LCRF yielded an amino acid sequence for 41 residues as follows: STFWAYQPDGDNDPTDYQKYEHTSSPSQLLAPGDYPCVIEV. When infused intraduodenally, the purified peptide stimulated pancreatic protein and fluid secretion in a dose-related manner in conscious rats and significantly elevated plasma CCK levels. Immunoaffinity chromatography using antisera raised to synthetic LCRF-(1-6) abolished the CCK releasing activity of intestinal secretions. These studies demonstrate, to our knowledge, the first chemical characterization of a luminally secreted enteric peptide functioning as an intraluminal regulator of intestinal hormone release.
Resumo:
The inhibition of alpha i2-/- mouse cardiac isoproterenol-stimulated adenylyl cyclase (AC; EC 4.6.1.1) activity by carbachol and that of alpha i2-/- adipocyte AC by phenylisopropyladenosine (PIA), prostaglandin E2, and nicotinic acid were partially, but not completely, inhibited. While the inhibition of cardiac AC was affected in all alpha i2-/- animals tested, only 50% of the alpha i2-/- animals showed an impaired inhibition of adipocyte AC, indicative of a partial penetrance of this phenotype. In agreement with previous results, the data show that Gi2 mediates hormonal inhibition of AC and that Gi3 and/or Gi1 is capable of doing the same but with a lower efficacy. Disruption of the alpha i2 gene affected about equally the actions of all the receptors studied, indicating that none of them exhibits a striking specificity for one type of Gi over another and that receptors are likely to he selective rather than specific in their interaction with functionally homologous G proteins (e.g., Gi1, Gi2, Gi3). Western analysis of G protein subunit levels in simian virus 40-transformed primary embryonic fibroblasts from alpha i2+/+ and alpha i2-/- animals showed that alpha i2 accounts for about 50% of the immunopositive G protein alpha subunits and that loss of the alpha i2 is accompanied by a parallel reduction in G beta 35 and G beta 36 subunits and by a 30-50% increase in alpha i3. This suggests that G beta-gamma levels may be regulated passively through differential rates of turnover in their free vs. trimeric states. The existence of compensatory increase(s) in alpha i subunit expression raises the possibility that the lack of effect of a missing alpha i2 on AC inhibition in adipocytes of some alpha i2-/- animals may be the reflection of a more pronounced compensatory expression of alpha i3 and/or alpha i1.
Resumo:
pS2 is a member of the trefoil peptide family, all of which are overexpressed at sites of gastrointestinal injury. We hypothesized that they are important in stimulating mucosal repair. To test this idea, we have produced a transgenic mice strain that expresses human pS2 (hpS2) specifically within the jejunum and examined the effect of this overexpression on proliferation and susceptibility to indomethacin-induced damage. A transgenic mouse was produced by microinjecting fertilized oocytes with a 1.7-kb construct consisting of rat intestinal fatty acid binding protein promoter (positions -1178 to +28) linked to full-length (490 bp) hpS2 cDNA. Screening for positive animals was by Southern blot analysis. Distribution of hpS2 expression was determined by using Northern and Western blot analyses and immunohistochemical staining. Proliferation of the intestinal mucosa was determined by assessing the crypt cell production rate. Differences in susceptibility to intestinal damage were analyzed in animals that had received indomethacin (85 mg/kg s.c.) 0-30 h previously. Expression of hpS2 was limited to the enterocytes of the villi within the jejunum. In the nondamaged intestine, villus height and crypt cell production rate were similar in transgenic and negative (control) litter mates. However, there was a marked difference in the amount of damage caused by indomethacin in control and transgenic animals in the jejunum (30% reduction in villus height in controls vs. 12% reduction in transgenic animals, P < 0.01) but the damage sustained in the non-hpS2-expressing ileal region was similar in control and transgenic animals. These studies support the hypothesis that trefoil peptides are important in stimulating gastrointestinal repair.
Resumo:
The phosphoprotein phosducin (Pd) regulates many guanine nucleotide binding protein (G protein)-linked signaling pathways. In visual signal transduction, unphosphorylated Pd blocks the interaction of light-activated rhodopsin with its G protein (Gt) by binding to the beta gamma subunits of Gt and preventing their association with the Gt alpha subunit. When Pd is phosphorylated by cAMP-dependent protein kinase, it no longer inhibits Gt subunit interactions. Thus, factors that determine the phosphorylation state of Pd in rod outer segments are important in controlling the number of Gts available for activation by rhodopsin. The cyclic nucleotide dependencies of the rate of Pd phosphorylation by endogenous cAMP-dependent protein kinase suggest that cAMP, and not cGMP, controls Pd phosphorylation. The synthesis of cAMP by adenylyl cyclase in rod outer segment preparations was found to be dependent on Ca2+ and calmodulin. The Ca2+ dependence was within the physiological range of Ca2+ concentrations in rods (K1/2 = 230 +/- 9 nM) and was highly cooperative (n app = 3.6 +/- 0.5). Through its effect on adenylyl cyclase and cAMP-dependent protein kinase, physiologically high Ca2+ (1100 nM) was found to increase the rate of Pd phosphorylation 3-fold compared to the rate of phosphorylation at physiologically low Ca2+ (8 nM). No evidence for Pd phosphorylation by other (Ca2+)-dependent kinases was found. These results suggest that Ca2+ can regulate the light response at the level of Gt activation through its effect on the phosphorylation state of Pd.