930 resultados para INDIUM-OXIDE NANOPARTICLES
Resumo:
Metal oxide semiconductor (MOS) sensors are a class of chemical sensors that have potential for being a practical core sensor module for an electronic nose system in various environmental monitoring applications. However, the responses of these sensors may be affected by changes in humidity and this must be taken into consideration when developing calibration models. This paper characterises the humidity dependence of a sensor array which consists of 12 MOS sensors. The results were used to develop calibration models using partial least squares (PLS). Effects of humidity on the response of the sensor array and predictive ability of partial least squares are discussed. It is shown that partial least squares can provide proper calibration models to compensate for effects caused by changes in humidity. Special Issue: Selected Paper from the 12th International Symposium on Olfaction and Electronic Noses - ISOEN 2007, International Symposium on Olfaction and Electronic Noses.
Resumo:
Isolating, purifying, and identifying proteins in complex biological matrices is often difficult, time consuming, and unreliable. Herein we describe a rapid screening technique for proteins in biological matrices that combines selective protein isolation with direct surface enhanced Raman spectroscopy (SERS) detection. Magnetic core gold nanoparticles were synthesised, characterised, and subsequently functionalized with recombinant human erythropoietin (rHuEPO)-specific antibody. The functionalized nanoparticles were used to capture rHuEPO from horse blood plasma within 15 minutes. The selective binding between the protein and the functionalized nanoparticles was monitored by SERS. The purified protein was then released from the nanoparticles’ surface and directly spectroscopically identified on a commercial nanopillar SERS substrate. ELISA independently confirmed the SERS identification and quantified the released rHuEPO. Finally, the direct SERS detection of the extracted protein was successfully demonstrated for in-field screening by a handheld Raman spectrometer within 1 minute sample measurement time.
Resumo:
Photoacoustic spectroscopy has been employed to estimate quantitatively the acid sites on oxide catalysts. The technique involves the measurement of the ratio of intensities of absorption bands due to conjugate bases and acids of indicators adsorbed on the catalyst surface as a function of the amount of added n-butylamine. Basic sites in sodium-impregnated alumina samples have been examined by adsorbing phenolphthalein on these surfaces.
Resumo:
Silica is a prominently utilized heterogeneous metal catalyst support. Functionalization of the silica with poly(ether imine) based dendritic phosphine ligand was conducted, in order to assess the efficacy of the dendritic phosphine in reactions facilitated by a silica supported metal catalyst. The phosphinated poly(ether imine) (PETIM) dendritic ligand was bound covalently to the functionalized silica. For this purpose, the phosphinated dendritic ligand containing an amine at the focal point was synthesized initially. Complexation of the dendritic phosphine functionalized silica with Pd(COD)Cl-2 yielded Pd(II) complex, which was reduced subsequently to Pd(0), by conditioning with EtOH. The Pd metal nanoparticle thus formed was characterized by physical methods, and the spherical nanoparticles were found to have >85% size distribution between 2 nm and 4 nm. The metal nanoparticle was tested as a hydrogenation catalyst of olefins. The catalyst could be recovered and recycled more than 10 times, without a loss in the catalytic efficiency.
Resumo:
By choosing appropriate microemulsion systems, hexagonal cobalt (Co) and cobalt-nickel (1:1) alloy nanoparticles have been obtained with cetyltrimethylammonium bromide as a cationic surfactant at 500 degrees C. This method thus stabilizes the hcp cobalt even at sizes (<10 nm) at which normally fcc cobalt is predicted to be stable. On annealing the hcp cobalt nanoparticles in H-2 at 700 degrees C we could transform them to fcc cobalt nanoparticles. Microscopy studies show the formation of spherical nanoparticles of hexagonal and cubic forms of cobalt and Co-Ni (1:1) alloy nanoparticles with the average size of 4, 8 and 20 nm, respectively. Electrochemical studies show that the catalytic property towards oxygen evolution is dependent on the applied voltage. At low voltage (less than 0.65 V) the Co (hexagonal) nanoparticles are superior to the alloy (Co-Ni) nanoparticles while above this voltage the alloy nanoparticles are more efficient catalysts. The nanoparticles of cobalt (hcp and fcc) and alloy (Co-Ni) nanoparticles show ferromagnetism. The saturation magnetization of Co-Ni nanoparticles is reduced compared to the bulk possibly due to surface oxidation.
Resumo:
We present a comparative study of the low temperature electrical transport properties of the carbon matrix containing iron nanoparticles and the films. The conductivity of the nanoparticles located just below the metal-insulator transition exhibits metallic behavior with a logarithmic temperature dependence over a large temperature interval. The zero-field conductivity and the negative magnetoresistance, showing a characteristic upturn at liquid helium temperature, are consistently explained by incorporating the Kondo relation and the two dimensional electron-electron interaction. The films, in contrast, exhibit a crossover of the conductivity from power-law dependence at high temperatures to an activated hopping law dependence in the low temperature region. The transition is attributed to changes in the energy dependence of the density of states near the Fermi level. The observed magnetoresistance is discussed in terms of quantum interference effect on a three-dimensional variable range hopping mechanism.
Resumo:
We have probed the size dependency of the first hyperpolarizability (b) of copper nanoparticles by hyper-Rayleigh scattering (HRS). Our results indicate that second harmonic generation (SHG) originates predominantly at the surface of the nanoparticles as long as the size (d) remains small compared to the wavelength (k). However, volume contribution to the SH response due to the retardation effect becomes important when particle size grows beyond the `small particle limit'. There is a significant dispersion in the b values of copper nanoparticles owing tothe presence of the strong surface plasmon resonance (SPR) band.
Resumo:
Absract is not available.
Resumo:
Thiosulfate (S2O32−) and tetrathionate (S4O62−)are oxidized to sulfate by air at atmospheric pressure and 50–70°C in the presence of cuprous oxide (Cu2O) as catalyst. Sulfate is produced from S2O32− by series-parallel reaction paths involving S4O62− as an intermediate. The rate data obtained for air oxidation of S2O32− on Cu2O agree well with a pseudo-homogeneous first order kinetic scheme, yielding values of rate constants for series parallel reaction paths which have been used in modelling the catalyzed air oxidation of S2O32−. Air oxidation of S4O62− on Cu2O proceeds at a higher rate in the presence of S2O32− than in its absence. Cu2O is less active than Cu2S for the air oxidation of S2O32−, as shown by the rate constant values which for Cu2O catalyzed oxidation are an order of magnitude smaller than those for the Cu2S catalyzed oxidation.
Resumo:
Synthesis of fine particle α-alumina and related oxide materials such as MgAl2O4, CaAl2O4, Y3Al5O12 (YAG), Image , β′-alumina, LaAlO3 and ruby powder (Image ) has been achieved at low temperatures (500°C) by the combustion of corresponding metal nitrate-urea mixtures. Solid combustion products have been identified by their characteristic X-ray diffraction patterns. The fine particle nature of α-alumina and related oxide materials has been investigated using SEM, TEM, particle size analysis and surface area measurements.
Resumo:
Organic/inorganic hybrid gels have been developed in order to control the three-dimensional structure of photoactive nanofibers and metallic nanoparticles (NPs). These materials are prepared by simultaneous self-assembly of the 2,3-didecyloxyanthracene (DDOA) gelator and of thiol-capped gold nanoparticles (AuNPs). TEM and fluorescence measurements show that alkane-thiol capped AuNPs are homogeneously dispersed and tightly attached to the thermoreversible fibrillar network formed by the organogelator in n-butanol or n-decanol. Rheology and thermal stability measurements reveal moreover that the mechanical and thermal stabilities of the DDOA organogels are not significantly altered and that they remain strong, viscoelastic materials. The hybrid materials display a variable absorbance in the visible range because of the AuNPs, whereas the strong luminescence of the DDOA nanofibers is efficiently quenched by micromolar amounts of AuNPs. Besides, we obtained hybrid aerogels using supercritical CO2. These arc very low-density porous materials showing fibrillar networks oil which fluorinated gold NPs arc dispersed. These hybrid materials are of high interest because of their tunable optical properties and are under investigation for efficient light scattering.
Resumo:
Complexes of lanthanide perchlorates with 4-cyano pyridine-1-oxide, 4-chloro 2-picoline-1-oxide and 4-dimethyl-amino 2-picoline-1-oxide have been isolated for the first time and characterized by analysis, conductance, infrared, NMR and electronic spectra. The complexes of 4-cyano pyridine-1-oxides have the composition Ln(CyPO)6(ClO4)3. 2H2O (Ln=La, Sm, Dy and Ho); Ln(CyPO)7 (ClO4)3. 2H2O (Ln=Pr, Nd, Er and Yb); and Ln(CyPO)5 (ClO4)3. 2H2O (Ln=Gd and Tb). The complexes of 4-chloro 2-picoline-1-oxide analyse for the formulae Ln(CpicO)6 (ClO4)3 (Ln=La, Pr, Nd and Ho); and Ln (CpicO)5 (ClO4)3 (Ln=Er and Yb), and those of 4-dimethylamino 2-picoline-1-oxide for Ln(DMPicO)6 (ClO4)3 (Ln=La and Nd); Ln(DMPicO)7 (ClO4)3 (Ln=Gd, Er and Yb); and Ln(DMPicO)8 (ClO4)3 (Ln=Dy and Ho).