893 resultados para IMPROVEMENT
Resumo:
The objective of this study was to propose a multi-criteria optimization and decision-making technique to solve food engineering problems. This technique was demostrated using experimental data obtained on osmotic dehydratation of carrot cubes in a sodium chloride solution. The Aggregating Functions Approach, the Adaptive Random Search Algorithm, and the Penalty Functions Approach were used in this study to compute the initial set of non-dominated or Pareto-optimal solutions. Multiple non-linear regression analysis was performed on a set of experimental data in order to obtain particular multi-objective functions (responses), namely water loss, solute gain, rehydration ratio, three different colour criteria of rehydrated product, and sensory evaluation (organoleptic quality). Two multi-criteria decision-making approaches, the Analytic Hierarchy Process (AHP) and the Tabular Method (TM), were used simultaneously to choose the best alternative among the set of non-dominated solutions. The multi-criteria optimization and decision-making technique proposed in this study can facilitate the assessment of criteria weights, giving rise to a fairer, more consistent, and adequate final compromised solution or food process. This technique can be useful to food scientists in research and education, as well as to engineers involved in the improvement of a variety of food engineering processes.
Resumo:
The project arises from the need to develop improved teaching methodologies in field of the mechanics of continuous media. The objective is to offer the student a learning process to acquire the necessary theoretical knowledge, cognitive skills and the responsibility and autonomy to professional development in this area. Traditionally the teaching of the concepts of these subjects was performed through lectures and laboratory practice. During these lessons the students attitude was usually passive, and therefore their effectiveness was poor. The proposed methodology has already been successfully employed in universities like University Bochum, Germany, University the South Australia and aims to improve the effectiveness of knowledge acquisition through use by the student of a virtual laboratory. This laboratory allows to adapt the curricula and learning techniques to the European Higher Education and improve current learning processes in the University School of Public Works Engineers -EUITOP- of the Technical University of Madrid -UPM-, due there are not laboratories in this specialization. The virtual space is created using a software platform built on OpenSim, manages 3D virtual worlds, and, language LSL -Linden Scripting Language-, which imprints specific powers to objects. The student or user can access this virtual world through their avatar -your character in the virtual world- and can perform practices within the space created for the purpose, at any time, just with computer with internet access and viewfinder. The virtual laboratory has three partitions. The virtual meeting rooms, where the avatar can interact with peers, solve problems and exchange existing documentation in the virtual library. The interactive game room, where the avatar is has to resolve a number of issues in time. And the video room where students can watch instructional videos and receive group lessons. Each audiovisual interactive element is accompanied by explanations framing it within the area of knowledge and enables students to begin to acquire a vocabulary and practice of the profession for which they are being formed. Plane elasticity concepts are introduced from the tension and compression testing of test pieces of steel and concrete. The behavior of reticulated and articulated structures is reinforced by some interactive games and concepts of tension, compression, local and global buckling will by tests to break articulated structures. Pure bending concepts, simple and composite torsion will be studied by observing a flexible specimen. Earthquake resistant design of buildings will be checked by a laboratory test video.
Resumo:
In this paper we approximate to the understanding of the hybrid city as a context of changes, produced in the perception and in the modes of inhabiting and coexisting in cities through new technologies of information and communication.
Resumo:
This work is related to the output impedance improvement of a Multiphase Buck converter with Peak Current Mode Control (PCMC) by means of introducing an additional power path that virtually increases the output capacitance during transients. Various solutions that can be employed to improve the dynamic behavior of the converter system exist, but nearly all solutions are developed for a Single Phase Buck converter with Voltage Mode Control (VMC), while in the VRM applications, due to the high currents, the system is usually implemented as a Multiphase Buck Converter with Current Mode Control. The additional energy path, as presented here, is introduced with the Output Impedance Correction Circuit (OICC) based on the Controlled Current Source (CCS). The OICC is used to inject or extract a current n-1 times larger than the output capacitor current, thus virtually increasing n times the value of the output capacitance during the transients. Furthermore, this work extends the OICC concept to a Multiphase Buck Converter system while comparing proposed solution with the system that has n times bigger output capacitor. In addition, the OICC is implemented as a Synchronous Buck Converter with PCMC, thus reducing its influence on the system efficiency.
Resumo:
Wide experimental evidence of the phosphorus diffusion gettering beneficial effect on solar grade silicon is found by measuring electron effective lifetime and interstitial iron concentration in as-grown and post processed samples from two ingots of upgraded metallurgical grade silicon produced by Ferrosolar. Results after two different P-diffusion processes are compared: P emitter diffusion at 850ºC followed by fast cool-down (called “standard process”) or followed by slow cool-down (called “extended process”). It is shown that final lifetimes of this low cost material are in the range of those obtained with conventional material. The extended process can be beneficial for wafers with specific initial distribution and concentration of iron, e.g. materials with high concentration of big Fe precipitates, while for other cases the standard process is enough efficient. An analysis based on the comparison of measured lifetime and dissolved iron concentration with theoretical calculations helps to infer the initial iron distribution and concentration, and according to that, choose the more effective type of gettering.
Resumo:
At this moment of extended economic, social and environmental crisis within which new interventions on the consolidated city are being set out, it is essential to count on the acquired experience in urban rehabilitation processes that were carried out in Spain during the last thirty years. Despite the complexity of this kind of processes and the diversity of the situations and actions that happened, this paper addresses the analysis of common patterns in twenty urban rehabilitation experiences. Different stages of the processes were studied, from the management to the regenerated areas in order to ease the design of new intervention initiatives.
Resumo:
Current worldwide building legislation requirements aim to the design and construction of technical services that reduce energy consumption and improve indoor hygrothermal conditions. The retail sector in Spain, with a lot of outdated technical systems, demands energy conservation measures in order to reduce the increasingly electrical consumption for cooling. Climatic separation with modern air curtains and advanced hygrothermal control systems enables energy savings and can keep suitable indoor air temperature and humidity of stores with intense pedestrian traffic, especially when located in hot humid climates. As stated in the article, the energy savings in commercial buildings with these systems exceeds 30%
Resumo:
Light confinement strategies play a crucial role in the performance of thin-film (TF) silicon solar cells. One way to reduce the optical losses is the texturing of the transparent conductive oxide (TCO) that acts as the front contact. Other losses arise from the mismatch between the incident light spectrum and the spectral properties of the absorbent material that imply that low energy photons (below the bandgap value) are not absorbed, and therefore can not generate photocurrent. Up-conversion techniques, in which two sub-bandgap photons are combined to give one photon with a better matching with the bandgap, were proposed to overcome this problem. In particular, this work studies two strategies to improve light management in thin film silicon solar cells using laser technology. The first one addresses the problem of TCO surface texturing using fully commercial fast and ultrafast solid state laser sources. Aluminum doped Zinc Oxide (AZO) samples were laser processed and the results were optically evaluated by measuring the haze factor of the treated samples. As a second strategy, laser annealing experiments of TCOs doped with rare earth ions are presented as a potential process to produce layers with up-conversion properties, opening the possibility of its potential use in high efficiency solar cells.
Resumo:
Uno de los defectos más frecuentes en los generadores síncronos son los defectos a tierra tanto en el devanado estatórico, como de excitación. Se produce un defecto cuando el aislamiento eléctrico entre las partes activas de cualquiera de estos devanados y tierra se reduce considerablemente o desaparece. La detección de los defectos a tierra en ambos devanados es un tema ampliamente estudiado a nivel industrial. Tras la detección y confirmación de la existencia del defecto, dicha falta debe ser localizada a lo largo del devanado para su reparación, para lo que habitualmente el rotor debe ser extraído del estator. Esta operación resulta especialmente compleja y cara. Además, el hecho de limitar la corriente de defecto en ambos devanados provoca que el defecto no sea localizable visualmente, pues apenas existe daño en el generador. Por ello, se deben aplicar técnicas muy laboriosas para localizar exactamente el defecto y poder así reparar el devanado. De cara a reducir el tiempo de reparación, y con ello el tiempo en que el generador esta fuera de servicio, cualquier información por parte del relé de protección acerca de la localización del defecto resultaría de gran utilidad. El principal objetivo de esta tesis doctoral ha sido el desarrollo de nuevos algoritmos que permitan la estimación de la localización de los defectos a tierra tanto en el devanado rotórico como estatórico de máquinas síncronas. Respecto al devanado de excitación, se ha presentado un nuevo método de localización de defectos a tierra para generadores con excitación estática. Este método permite incluso distinguir si el defecto se ha producido en el devanado de excitación, o en cualquiera de los componentes del sistema de excitación, esto es, transformador de excitación, conductores de alimentación del rectificador controlado, etc. En caso de defecto a tierra en del devanado rotórico, este método proporciona una estimación de su localización. Sin embargo, para poder obtener la localización del defecto, se precisa conocer el valor de resistencia de defecto. Por ello, en este trabajo se presenta además un nuevo método para la estimación de este parámetro de forma precisa. Finalmente, se presenta un nuevo método de detección de defectos a tierra, basado en el criterio direccional, que complementa el método de localización, permitiendo tener en cuenta la influencia de las capacidades a tierra del sistema. Estas capacidades resultan determinantes a la hora de localizar el defecto de forma adecuada. En relación con el devanado estatórico, en esta tesis doctoral se presenta un nuevo algoritmo de localización de defectos a tierra para generadores que dispongan de la protección de faltas a tierra basada en la inyección de baja frecuencia. Se ha propuesto un método general, que tiene en cuenta todos los parámetros del sistema, así como una versión simplificada del método para generadores con capacidades a tierra muy reducida, que podría resultar de fácil implementación en relés de protección comercial. Los algoritmos y métodos presentados se han validado mediante ensayos experimentales en un generador de laboratorio de 5 kVA, así como en un generador comercial de 106 MVA con resultados satisfactorios y prometedores. ABSTRACT One of the most common faults in synchronous generators is the ground fault in both the stator winding and the excitation winding. In case of fault, the insulation level between the active part of any of these windings and ground lowers considerably, or even disappears. The detection of ground faults in both windings is a very researched topic. The fault current is typically limited intentionally to a reduced level. This allows to detect easily the ground faults, and therefore to avoid damage in the generator. After the detection and confirmation of the existence of a ground fault, it should be located along the winding in order to repair of the machine. Then, the rotor has to be extracted, which is a very complex and expensive operation. Moreover, the fact of limiting the fault current makes that the insulation failure is not visually detectable, because there is no visible damage in the generator. Therefore, some laborious techniques have to apply to locate accurately the fault. In order to reduce the repair time, and therefore the time that the generator is out of service, any information about the approximate location of the fault would be very useful. The main objective of this doctoral thesis has been the development of new algorithms and methods to estimate the location of ground faults in the stator and in the rotor winding of synchronous generators. Regarding the excitation winding, a new location method of ground faults in excitation winding of synchronous machines with static excitation has been presented. This method allows even to detect if the fault is at the excitation winding, or in any other component of the excitation system: controlled rectifier, excitation transformer, etc. In case of ground fault in the rotor winding, this method provides an estimation of the fault location. However, in order to calculate the location, the value of fault resistance is necessary. Therefore, a new fault-resistance estimation algorithm is presented in this text. Finally, a new fault detection algorithm based on directional criterion is described to complement the fault location method. This algorithm takes into account the influence of the capacitance-to-ground of the system, which has a remarkable impact in the accuracy of the fault location. Regarding the stator winding, a new fault-location algorithm has been presented for stator winding of synchronous generators. This algorithm is applicable to generators with ground-fault protection based in low-frequency injection. A general algorithm, which takes every parameter of the system into account, has been presented. Moreover, a simplified version of the algorithm has been proposed for generators with especially low value of capacitance to ground. This simplified algorithm might be easily implementable in protective relays. The proposed methods and algorithms have been tested in a 5 kVA laboratory generator, as well as in a 106 MVA synchronous generator with satisfactory and promising results.
Resumo:
Esta tesis se desarrolla dentro del marco de las comunicaciones satelitales en el innovador campo de los pequeños satélites también llamados nanosatélites o cubesats, llamados así por su forma cubica. Estos nanosatélites se caracterizan por su bajo costo debido a que usan componentes comerciales llamados COTS (commercial off-the-shelf) y su pequeño tamaño como los Cubesats 1U (10cm*10 cm*10 cm) con masa aproximada a 1 kg. Este trabajo de tesis tiene como base una iniciativa propuesta por el autor de la tesis para poner en órbita el primer satélite peruano en mi país llamado chasqui I, actualmente puesto en órbita desde la Estación Espacial Internacional. La experiencia de este trabajo de investigación me llevo a proponer una constelación de pequeños satélites llamada Waposat para dar servicio de monitoreo de sensores de calidad de agua a nivel global, escenario que es usado en esta tesis. Es ente entorno y dadas las características limitadas de los pequeños satélites, tanto en potencia como en velocidad de datos, es que propongo investigar una nueva arquitectura de comunicaciones que permita resolver en forma óptima la problemática planteada por los nanosatélites en órbita LEO debido a su carácter disruptivo en sus comunicaciones poniendo énfasis en las capas de enlace y aplicación. Esta tesis presenta y evalúa una nueva arquitectura de comunicaciones para proveer servicio a una red de sensores terrestres usando una solución basada en DTN (Delay/Disruption Tolerant Networking) para comunicaciones espaciales. Adicionalmente, propongo un nuevo protocolo de acceso múltiple que usa una extensión del protocolo ALOHA no ranurado, el cual toma en cuenta la prioridad del trafico del Gateway (ALOHAGP) con un mecanismo de contienda adaptativo. Utiliza la realimentación del satélite para implementar el control de la congestión y adapta dinámicamente el rendimiento efectivo del canal de una manera óptima. Asumimos un modelo de población de sensores finito y una condición de tráfico saturado en el que cada sensor tiene siempre tramas que transmitir. El desempeño de la red se evaluó en términos de rendimiento efectivo, retardo y la equidad del sistema. Además, se ha definido una capa de convergencia DTN (ALOHAGP-CL) como un subconjunto del estándar TCP-CL (Transmission Control Protocol-Convergency Layer). Esta tesis muestra que ALOHAGP/CL soporta adecuadamente el escenario DTN propuesto, sobre todo cuando se utiliza la fragmentación reactiva. Finalmente, esta tesis investiga una transferencia óptima de mensajes DTN (Bundles) utilizando estrategias de fragmentación proactivas para dar servicio a una red de sensores terrestres utilizando un enlace de comunicaciones satelitales que utiliza el mecanismo de acceso múltiple con prioridad en el tráfico de enlace descendente (ALOHAGP). El rendimiento efectivo ha sido optimizado mediante la adaptación de los parámetros del protocolo como una función del número actual de los sensores activos recibidos desde el satélite. También, actualmente no existe un método para advertir o negociar el tamaño máximo de un “bundle” que puede ser aceptado por un agente DTN “bundle” en las comunicaciones por satélite tanto para el almacenamiento y la entrega, por lo que los “bundles” que son demasiado grandes son eliminados o demasiado pequeños son ineficientes. He caracterizado este tipo de escenario obteniendo una distribución de probabilidad de la llegada de tramas al nanosatélite así como una distribución de probabilidad del tiempo de visibilidad del nanosatélite, los cuales proveen una fragmentación proactiva óptima de los DTN “bundles”. He encontrado que el rendimiento efectivo (goodput) de la fragmentación proactiva alcanza un valor ligeramente inferior al de la fragmentación reactiva. Esta contribución permite utilizar la fragmentación activa de forma óptima con todas sus ventajas tales como permitir implantar el modelo de seguridad de DTN y la simplicidad al implementarlo en equipos con muchas limitaciones de CPU y memoria. La implementación de estas contribuciones se han contemplado inicialmente como parte de la carga útil del nanosatélite QBito, que forma parte de la constelación de 50 nanosatélites que se está llevando a cabo dentro del proyecto QB50. ABSTRACT This thesis is developed within the framework of satellite communications in the innovative field of small satellites also known as nanosatellites (<10 kg) or CubeSats, so called from their cubic form. These nanosatellites are characterized by their low cost because they use commercial components called COTS (commercial off-the-shelf), and their small size and mass, such as 1U Cubesats (10cm * 10cm * 10cm) with approximately 1 kg mass. This thesis is based on a proposal made by the author of the thesis to put into orbit the first Peruvian satellite in his country called Chasqui I, which was successfully launched into orbit from the International Space Station in 2014. The experience of this research work led me to propose a constellation of small satellites named Waposat to provide water quality monitoring sensors worldwide, scenario that is used in this thesis. In this scenario and given the limited features of nanosatellites, both power and data rate, I propose to investigate a new communications architecture that allows solving in an optimal manner the problems of nanosatellites in orbit LEO due to the disruptive nature of their communications by putting emphasis on the link and application layers. This thesis presents and evaluates a new communications architecture to provide services to terrestrial sensor networks using a space Delay/Disruption Tolerant Networking (DTN) based solution. In addition, I propose a new multiple access mechanism protocol based on extended unslotted ALOHA that takes into account the priority of gateway traffic, which we call ALOHA multiple access with gateway priority (ALOHAGP) with an adaptive contention mechanism. It uses satellite feedback to implement the congestion control, and to dynamically adapt the channel effective throughput in an optimal way. We assume a finite sensor population model and a saturated traffic condition where every sensor always has frames to transmit. The performance was evaluated in terms of effective throughput, delay and system fairness. In addition, a DTN convergence layer (ALOHAGP-CL) has been defined as a subset of the standard TCP-CL (Transmission Control Protocol-Convergence Layer). This thesis reveals that ALOHAGP/CL adequately supports the proposed DTN scenario, mainly when reactive fragmentation is used. Finally, this thesis investigates an optimal DTN message (bundles) transfer using proactive fragmentation strategies to give service to a ground sensor network using a nanosatellite communications link which uses a multi-access mechanism with priority in downlink traffic (ALOHAGP). The effective throughput has been optimized by adapting the protocol parameters as a function of the current number of active sensors received from satellite. Also, there is currently no method for advertising or negotiating the maximum size of a bundle which can be accepted by a bundle agent in satellite communications for storage and delivery, so that bundles which are too large can be dropped or which are too small are inefficient. We have characterized this kind of scenario obtaining a probability distribution for frame arrivals to nanosatellite and visibility time distribution that provide an optimal proactive fragmentation of DTN bundles. We have found that the proactive effective throughput (goodput) reaches a value slightly lower than reactive fragmentation approach. This contribution allows to use the proactive fragmentation optimally with all its advantages such as the incorporation of the security model of DTN and simplicity in protocol implementation for computers with many CPU and memory limitations. The implementation of these contributions was initially contemplated as part of the payload of the nanosatellite QBito, which is part of the constellation of 50 nanosatellites envisaged under the QB50 project.
Resumo:
The different theoretical models related with storm wave characterization focus on determining the significant wave height of the peak storm, the mean period and, usually assuming a triangle storm shape, their duration. In some cases, the main direction is also considered. Nevertheless, definition of the whole storm history, including the variation of the main random variables during the storm cycle is not taken into consideration. The representativeness of the proposed storm models, analysed in a recent study using an empirical maximum energy flux time dependent function shows that the behaviour of the different storm models is extremely dependent on the climatic characteristics of the project area. Moreover, there are no theoretical models able to adequately reproduce storm history evolution of the sea states characterized by important swell components. To overcome this shortcoming, several theoretical storm shapes are investigated taking into consideration the bases of the three best theoretical storm models, the Equivalent Magnitude Storm (EMS), the Equivalent Number of Waves Storm (ENWS) and the Equivalent Duration Storm (EDS) models. To analyse the representativeness of the new storm shape, the aforementioned maximum energy flux formulation and a wave overtopping discharge structure function are used. With the empirical energy flux formulation, correctness of the different approaches is focussed on the progressive hydraulic stability loss of the main armour layer caused by real and theoretical storms. For the overtopping structure equation, the total volume of discharge is considered. In all cases, the results obtained highlight the greater representativeness of the triangular EMS model for sea waves and the trapezoidal (nonparallel sides) EMS model for waves with a higher degree of wave development. Taking into account the increase in offshore and shallow water wind turbines, maritime transport and deep vertical breakwaters, the maximum wave height of the whole storm history and that corresponding to each sea state belonging to its cycle's evolution is also considered. The procedure considers the information usually available for extreme waves' characterization. Extrapolations of the maximum wave height of the selected storms have also been considered. The 4th order statistics of the sea state belonging to the real and theoretical storm have been estimated to complete the statistical analysis of individual wave height
Resumo:
Auxin plays an important role in many aspects of plant development including stress responses. Here we briefly summarize how auxin is involved in salt stress, drought (i.e. mostly osmotic stress), waterlogging and nutrient deficiency in Brassica plants. In addition, some mechanisms to control auxin levels and signaling in relation to root formation (under stress) will be reviewed. Molecular studies are mainly described for the model plant Arabidopsis thaliana, but we also like to demonstrate how this knowledge can be transferred to agriculturally important Brassica species, such as Brassica rapa, Brassica napus and Brassica campestris. Moreover, beneficial fungi could play a role in the adaptation response of Brassica roots to abiotic stresses. Therefore, the possible influence of Piriformospora indica will also be covered since the growth promoting response of plants colonized by P. indica is also linked to plant hormones, among them auxin.