807 resultados para Hypothalamus, Middle


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fil: Zecchin de Fasano, Graciela Cristina. Universidad Nacional de La Plata. Facultad de Humanidades y Ciencias de la Educación; Argentina.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present high-resolution (2-3 kyr) benthic foraminiferal stable isotopes in a continuous, well-preserved sedimentary archive from the West Pacific Ocean (Ocean Drilling Program Site 1146), which track climate evolution in unprecedented resolution over the period 12.9 to 8.4 Ma. We developed an astronomically tuned chronology over this interval and integrated our new records with published isotope data from the same location to reconstruct long-term climate and ocean circulation development between 16.4 and 8.4 Ma. This extended perspective reveals that the long eccentricity (400 kyr) cycle is prominently encoded in the d13C signal over most of the record, reflecting long-term fluctuations in the carbon cycle. The d18O signal closely follows variations in short eccentricity (100 kyr) and obliquity (41 kyr). In particular, the obliquity cycle is prominent from ~14.6 to 14.1 Ma and from ~9.8 to 9.2 Ma, when high-amplitude variability in obliquity is congruent with low-amplitude variability in short eccentricity. The d18O curve is additionally characterized by a series of incremental steps at ~14.6, 13.9, 13.1, 10.6, 9.9, and 9.0 Ma, which we attribute to progressive deep water cooling and/or glaciation episodes following the end of the Miocene climatic optimum. On the basis of d18O amplitudes, we find that climate variability decreased substantially after ~13 Ma, except for a remarkable warming episode at ~10.8-10.7 Ma at peak insolation during eccentricity maxima (100 and 400 kyr). This transient warming, associated with a massive negative carbon isotope shift, is reminiscent of intense global warming events at eccentricity maxima during the Miocene climatic optimum.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Drilling at Site 786, located in the center of the Izu-Bonin forearc basin, penetrated an apparently continuous section of middle Eocene/lower Oligocene volcaniclastic breccias and nannofossil oozes. Planktonic foraminiferal faunas underwent a gradual transition from relatively high-diversity middle Eocene through late Eocene tropical or warm-water assemblages to a cooler-water, less diverse assemblage during the early Oligocene. In the cosmopolitan benthic foraminiferal faunas, the major transition occurred during the early late Eocene. Middle Eocene benthic assemblages resembling the bathyal 'Lenticulina' fauna (characterized by Osangularia mexicana, Cibicidoides eocaenus, and several buliminid species) changed to an upper Eocene abyssal 'Globocassidulina subglobosa' fauna (characterized by Cibicidoides praemundulus, Globocassidulina subglobosa, Gyroidinoides girardanus, Oridorsalis umbonatus, and Siphonodosaria aculeata). Even though no large, abrupt faunal changes appear to have been associated with the assumed Eocene/Oligocene boundary, benthic species turnover continued through the late Eocene and into the early Oligocene. This resulted in a slightly lower diversity early Oligocene fauna dominated by three species: Laevidentalina sp., Bulimina jarvisi, and Gyroidinoides girardanus. The progression from a middle Eocene bathyal 'Lenticulina' fauna, rather than an abyssal 'Nuttallides truempyi' fauna, to an abyssal 'Globocassidulina subglobosa' fauna during the early late Eocene, suggests that a bathymetric deepening occurred at Site 786. Increased water depths may have resulted from tectonic subsidence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cores from Sites 689 and 690 of Ocean Drilling Program Leg 113 provide the most continuous Paleocene and Eocene sequence yet recovered by deep sea drilling in the high latitudes of the Southern Ocean. The nannofossil-foraminifer oozes and chalks recovered from Maud Rise at 65°S in the Weddell Sea provide a unique opportunity for biostratigraphic study of extremely high southern latitude carbonate sediments. The presence of warm water index fossils such as the discoasters and species of the Tribrachiatus plexus facilitate the application of commonly used low latitude calcareous nannofossil biostratigraphic zonation schemes for the upper Paleocene and lower Eocene intervals. In the more complete section at Site 690, Okada and Bukry Zones CP1 through CP10 can be identified for the most part with the possible exception of Zone CP3. Several hiatuses are present in the sequence at Site 689 with the most notable being at the Cretaceous/Tertiary and Paleocene/Eocene boundaries. Though not extremely diverse, the assemblage of discoasters in the upper Paleocene and lower Eocene calcareous oozes is indicative of warm, relatively equable climates during that interval. A peak in discoaster diversity in uppermost Paleocene sediments (Zone CP8) corresponds to a negative shift in 5180 values. Associated coccolith assemblages are quite characteristic of high latitudes with abundant Chiasmolithus, Prinsius, and Toweius. Climatic cooling is indicated for middle Eocene sediments by assemblages that contain very abundant Reticulofenestra, lack common discoasters and sphenoliths and are much less diverse overall. Two new taxa are described, Biscutum? neocoronum n. sp. and Amithalithina sigmundii n. gen., n. sp.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Li and Li isotopes have been measured in the clay fraction of sediments recovered from the Middle Valley hydrothermal site on the Juan De Fuca Ridge. The Li content of pure detrital clays is 51 ppm while hydrothermal clays and carbonates have lower Li (22+/-11 ppm). However, there is no clear relationship between the mineralogy of the hydrothermal alteration products and their Li content. The d7Li value of the detrital clays is +5.8?. Hydrothermal clays and carbonates have d7Li in the range of -3.9? to +7.8?; these values do not seem to be dependent on the temperature at which they formed. Modelling of the Li and Li isotope systematics indicates that the fluid from which the alteration products form is significantly enriched in Li (higher than 10000 µmol/kg) relative to pore fluids recovered from within the sediments (up to 589 µmol/kg; [Wheat, C.G., M.J. Mottl, 1994. Data report: trace metal composition of pore water from Sites 855 through 858, Middle valley, Juan De Fuca Ridge. In Mottl, M.J., Davis, E.E., Fisher, A.T., Slack, J.F. (Eds.), Proc. ODP, Sci. Res. 139: 749-755; doi:10.2973/odp.proc.sr.139.269.1994]), and that this Li is derived from sediment. Thus, the alteration products are not in equilibrium with their conjugate pore fluids; rather, the alteration minerals formed at lower water/sediment ratios. This suggests that fluid flow pathways at Middle Valley were more diffuse in the past than they are today.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A high-resolution stratigraphy is essential toward deciphering climate variability in detail and understanding causality arguments of events in earth history. Because the highly dynamic middle to late Eocene provides a suitable testing ground for carbon cycle models for a waning warm world, an accurate time scale is needed to decode climate-driving mechanisms. Here we present new results from ODP Site 1260 (Leg 207) which covers a unique expanded middle Eocene section (magnetochrons C18r to C20r, late Lutetian to early Bartonian) of the tropical western Atlantic including the chron C19r transient hyperthermal event and the Middle Eocene Climate Optimum (MECO). To establish a detailed cyclostratigraphy we acquired a distinctive iron intensity records by XRF scanning Site 1260 cores. We revise the shipboard composite section, establish a cyclostratigraphy and use the exceptional eccentricity modulated precession cycles for orbital tuning. The new astrochronology revises the age of magnetic polarity chrons C19n to C20n, validates the position of very long eccentricity minima at 40.2 and 43.0 Ma in the orbital solutions, and extends the Astronomically Tuned Geological Time Scale back to 44 Ma. For the first time the new data provide clear evidence for an orbital pacing of the chron C19r event and a likely involvement of the very long eccentricity cycle contributing to the evolution of the MECO.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fil: Chá, Rita Teresita. Universidad Nacional de La Plata. Facultad de Humanidades y Ciencias de la Educación; Argentina.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quantitative radiolarian assemblage analysis has been conducted on middle and upper Eocene sediments (Zones RP16 to RP18) from Ocean Drilling Program Site 1052 in order to establish the radiolarian magnetobiochronology and determine the nature of the faunal turnover across the middle/late Eocene boundary in the western North Atlantic Ocean. We recognize and calibrate forty-five radiolarian bioevents to the magneto- and cyclo-stratigraphy from Site 1052 to enhance the biochronologic resolution for the middle and late Eocene. Our data is compared to sites in the equatorial Pacific (Leg 199) to access the diachrony of biostratigraphic events. Eleven bioevents are good biostratigraphic markers for tropical/subtropical locations (south of 30°N). The primary markers (lowest occurrences of Cryptocarpium azyx and Calocyclas bandyca) which are tropical zonal boundary markers for Zones RP17 and RP18 provide robust biohorizons for correlation and age determination from the low to middle latitudes and between the Atlantic and Pacific Oceans. Some other radiolarian bioevents are highly diachronous (<1 million years) between oceanic basins. A significant faunal turnover of radiolarians is recognized within Chron C17n.3n (37.7 Ma) where 13 radiolarian species disappear rapidly in less than 100 kyr and 4 new species originate. The radiolarian faunal turnover coincides with a major extinction in planktonic foraminifera. We name the turnover phase, the Middle/Late Eocene Turnover (MLET). Assemblage analysis reveals the MLET to be associated with a decrease in low-mid latitude taxa and increase in cosmopolitan taxa and radiolarian accumulation rates. The MLET might be related to increased biological productivity rather than to surface-water cooling.