959 resultados para Hydrothermal
Resumo:
The transition of disc-like chromium hydroxide nanomaterials to chromium oxide nanomaterials has been studied by hot stage Raman spectroscopy. The structure and morphology of α-CrO(OH) synthesised using hydrothermal treatment was confirmed by X-ray diffraction and transmission electron microscopy. The Raman spectrum of α-CrO(OH) is characterised by two intense bands at 823 and 630 cm-1 attributed to ν1 CrIII-O symmetric stretching mode, bands at 1179 cm-1 attributed to CrIII-OH δ deformation modes. No bands are observed above 3000 cm-1. The absence of characteristic OH vibrational bands may be due to short hydrogen bonds in the α-CrO(OH) structure. Upon thermal treatment of α-CrO(OH), new Raman bands are observed at 599, 542, 513, 396, 344 and 304 cm-1, which are attributed to Cr2O3. This hot-stage Raman study shows that the transition of α-CrO(OH) to Cr2O3 occurs before 350 °C.
Resumo:
The Granadilla eruption at 600 ka was one of the largest phonolitic explosive eruptions from the Las Cañadas volcano on Tenerife, producing a classical plinian eruptive sequence of a widespread pumice fall deposit overlain by an ignimbrite. The eruption resulted in a major phase of caldera collapse that probably destroyed the shallow-level magma chamber system. Granadilla pumices contain a diverse phenocryst assemblage of alkali feldspar + biotite + sodian diopside to aegirine–augite + titanomagnetite + ilmenite + nosean/haüyne + titanite + apatite; alkali feldspar is the dominant phenocryst and biotite is the main ferromagnesian phase. Kaersutite and partially resorbed plagioclase (oligoclase to sodic andesine) are present in some eruptive units, particularly in pumice erupted during the early plinian phase, and in the Granadilla ignimbrite at the top of the sequence. Associated with the kaersutite and plagioclase are small clots of microlitic plagioclase and kaersutite interpreted as quenched blebs of tephriphonolitic magma within the phonolite pumice. The Granadilla Member has previously been recognized as an example of reverse-then-normal compositional zonation, where the zonation is primarily expressed in terms of substantial variations in trace element abundances with limited major element variation (cryptic zonation). Evidence for cryptic zonation is also provided by the chemistry of the phenocryst phases, and corresponding changes in intensive parameters (e.g. T, f O2, f H2O). Geothermometry estimates indicate that the main body of phonolite magma had a temperature gradient from 860 °C to ∼790 °C, with hotter magma (≥900 °C) tapped at the onset and terminal phases of the eruption. The reverse-then-normal chemical and thermal zonation reflects the initial tapping of a partially hybridized magma (mixing of phonolite and tephriphonolite), followed by the more sequential tapping of a zoned and relatively large body of highly evolved phonolite at a new vent and during the main plinian phase. This suggests that the different magma types within the main holding chamber could have been laterally juxtaposed, as well as in a density-stratified arrangement. Correlations between the presence of mixed phenocryst populations (i.e. presence of plagioclase and kaersutite) and coarser pumice fall layers suggest that increased eruption vigour led to the tapping of hybridized and/or less evolved magma probably from greater depths in the chamber. New oxygen isotope data for glass and mineral separates preclude syn-eruptive interaction between the vesiculating magma and hydrothermal fluids as the cause of the Sr isotope disequilibrium identified previously for the deposit. Enrichment in radiogenic Sr in the pumice glass has more likely been due to low-temperature exchange with meteoric water that was enriched in 87Sr by sea spray, which may be a common process affecting porous and glassy pyroclastic deposits on oceanic islands.
Resumo:
Hollow micro-sized H2(H2O)Nb2O6 spheres constructed by nanocrystallites have been successfully synthesized via a bubble-template assisted hydrothermal process. In the reaction process, H2O2 acts as a bubble generator and plays a key role in the formation of the hollow structure. An in situ bubble-template mechanism has been proposed for the possible formation of the hollow structure. The spherelike assemblies of these H2(H2O)Nb2O6 nanoparticles have been transformed into their corresponding pseudohexagonal phase Nb2O5 through a moderate annealing dehydration process without destroying the hierarchical structure. Optical properties of the as-prepared hollow spheres were investigated. It is exciting that the absorption edge of the hollow Nb2O5 microspheres shifts about 18 nm to the violet compared with bulk powders in the UV/vis spectra, indicating its superior optical properties.
Resumo:
A solvothermal route for the preparation of crystalline state lithium niobate using Li2 CO3 and Nb2 O5 is developed. Oxalic acid is employed as solvent, which coordinates with niobium oxide to stimulate the main reaction. Scanning electron microscopy images show that the as-prepared sample displays a cubic morphology. X-ray diffraction and IR spectrum of the as-prepared sample indicate that the sample is well crystalline.
Resumo:
An ethylenediamine-assisted route has been designed for one-step synthesis of lithium niobate particles with a novel rodlike structure in an aqueous solution system. The morphological evolution for these lithium niobate rods was monitored via SEM: The raw materials form large lozenges first. These lozenges are a metastable intermediate of this reaction, and they subsequently crack into small rods after sufficiently long time. These small rods recrystallize and finally grow into individual lithium niobate rods. Interestingly, shape-controlled fabrication of lithium niobate powders was achieved through using different amine ligands. For instance, the ethylenediamine or ethanolamine ligan can induce the formation of rods, while n-butylamine prefers to construct hollow spheres. These as-obtained lithium niobate rods and hollow spheres may exhibit enhanced performance in an optical application field due to their distinctive structures. This effective ligand-tuned-morphology route can provide a new strategy to facilely achieve the shape-controlled synthesis of other niobates.
Resumo:
This research underlines the extensive application of nanostructured metal oxides in environmental systems such as hazardous waste remediation and water purification. This study tries to forge a new understanding of the complexity of adsorption and photocatalysis in the process of water treatment. Sodium niobate doped with a different amount of tantalum, was prepared via a hydrothermal reaction and was observed to be able to adsorb highly hazardous bivalent radioactive isotopes such as Sr2+ and Ra2+ions. This study facilitates the preparation of Nb-based adsorbents for efficiently removing toxic radioactive ions from contaminated water and also identifies the importance of understanding the influence of heterovalent substitution in microporous frameworks. Clay adsorbents were prepared via a two-step method to remove anionic and non-ionic herbicides from water. Firstly, layered beidellite clay was treated with acid in a hydrothermal process; secondly, common silane coupling agents, 3-chloro-propyl trimethoxysilane or triethoxy silane, were grafted onto the acid treated samples to prepare the adsorption materials. In order to isolate the effect of the clay surface, we compared the adsorption property of clay adsorbents with ƒ×-Al2O3 nanofibres grafted with the same functional groups. Thin alumina (£^-Al2O3) nanofibres were modified by the grafting of two organosilane agents 3-chloropropyltriethoxysilane and octyl triethoxysilane onto the surface, for the adsorptive removal of alachlor and imazaquin herbicides from water. The formation of organic groups during the functionalisation process established super hydrophobic sites along the surfaces and those non-polar regions of the surfaces were able to make close contact with the organic pollutants. A new structure of anatase crystals linked to clay fragments was synthesised by the reaction of TiOSO4 with laponite clay for the degradation of pesticides. Based on the Ti/clay ratio, these new catalysts showed a high degradation rate when compared with P25. Moreover, immobilized TiO2 on laponite clay fragments could be readily separated out from a slurry system after the photocatalytic reaction. Using a series of partial phase transition methods, an effective catalyst with fibril morphology was prepared for the degradation of different types of phenols and trace amount of herbicides from water. Both H-titanate and TiO2-(B) fibres coated with anatase nanocrystal were studied. When compared with a laponite clay photocatalyst, it was found that anatase dotted TiO2-(B) fibres prepared by a 45 h hydrothermal treatment followed by calcination were not only superior in performance in photocatalysis but could also be readily separated from a slurry system after photocatalytic reactions. This study has laid the foundation for the development of the ability to fabricate highly efficient nanostructured solids for the removal of radioactive ions and organic pollutants from contaminated water. These results now seem set to contribute to the development of advanced water purification devices in the future. These modified nanostructured materials with unusual properties have broadened their application range beyond their traditional use as adsorbents, to also encompass the storage of nuclear waste after concentrating from contaminated water.
Resumo:
Presented is the growth of zinc oxide nanorod/nanowire arrays on gallium nitride epitaxial layers. A hierarchical zinc oxide morphology comprising of different scale zinc oxide nanostructures was observed. The first tier of the surface comprised of typical zinc oxide nanorods, with most bridging to adjacent nanorods. While the second tier comprised of smaller zinc oxide nanowires approximately 30 nm in width often growing atop the aforementioned bridges. Samples were analysed via scanning electron microscopy, as well as, cross-sectional and high resolution transmission electron microscopy to elucidate the detailed growth and structural elements of the heterostructure. © 2009 Elsevier B.V. All rights reserved.
Resumo:
In this work, a range of nanomaterials have been synthesised based on metal oxyhydroxides MO(OH), where M=Al, Co, Cr, etc. Through a self-assembly hydrothermal route, metal oxyhydroxide nanomaterials with various morphologies were successfully synthesised: one dimensional boehmite (AlO(OH)) nanofibres, zero dimensional indium hydroxide (In(OH)3) nanocubes and chromium oxyhydroxide (CrO(OH)) nanoparticles, as well as two dimensional cobalt hydroxide and oxyhydroxide (Co(OH)2 & CoO(OH)) nanodiscs. In order to control the synthetic nanomaterial morphology and growth, several factors were investigated including cation concentration, temperature, hydrothermal treatment time, and pH. Metal ion doping is a promising technique to modify and control the properties of materials by intentionally introducing impurities or defects into the material. Chromium was successfully applied as a dopant for fabricating doped boehmite nanofibres. The thermal stability of the boehmite nanofibres was enhanced by chromium doping, and the photoluminescence property was introduced to the chromium doped alumina nanofibres. Doping proved to be an efficient method to modify and functionalize nanomaterials. The synthesised nanomaterials were fully characterised by X-ray diffraction (XRD), transmission electron microscopy (TEM) combined with selected area electron diffraction (SAED), scanning electron microscopy (SEM), BET specific surface area analysis, X-ray photoelectron spectroscopy (XPS) and thermo gravimetric analysis (TGA). Hot-stage Raman and infrared emission spectroscopy were applied to study the chemical reactions during dehydration and dehydroxylation. The advantage of these techniques is that the changes in molecular structure can be followed in situ and at the elevated temperatures.
Resumo:
Filtration membrane technology has already been employed to remove various organic effluents produced from the textile, paper, plastic, leather, food and mineral processing industries. To improve membrane efficiency and alleviate membrane fouling, an integrated approach is adopted that combines membrane filtration and photocatalysis technology. In this study, alumina nanofiber (AF) membranes with pore size of about 10 nm (determined by the liquid-liquid displacement method) have been synthesized through an in situ hydrothermal reaction, which permitted a large flux and achieved high selectivity. Silver nanoparticles (Ag NPs) are subsequently doped on the nanofibers of the membranes. Silver nanoparticles can strongly absorb visible light due to the surface plasmon resonance (SPR) effect, and thus induce photocatalytic degradation of organic dyes, including anionic, cationic and neutral dyes, under visible light irradiation. In this integrated system, the dyes are retained on the membrane surface, their concentration in the vicinity of the Ag NPs are high and thus can be efficiently decomposed. Meanwhile, the usual flux deterioration caused by the accumulation of the filtered dyes in the passage pores can be avoided. For example, when an aqueous solution containing methylene blue is processed using an integrated membrane, a large flux of 200 L m-2 h-1 and a stable permeating selectivity of 85% were achieved. The combined photocatalysis and filtration function leads to superior performance of the integrated membranes, which have a potential to be used for the removal of organic pollutants in drinking water.
Resumo:
The photocatalytic disinfection of Enterobacter cloacae and Enterobacter coli using microwave (MW), convection hydrothermal (HT) and Degussa P25 titania was investigated in suspension and immobilized reactors. In suspension reactors, MW-treated TiO(2) was the most efficient catalyst (per unit weight of catalyst) for the disinfection of E. cloacae. However, HT-treated TiO(2) was approximately 10 times more efficient than MW or P25 titania for the disinfection of E. coli suspensions in surface water using the immobilized reactor. In immobilized experiments, using surface water a significant amount of photolysis was observed using the MW- and HT-treated films; however, disinfection on P25 films was primarily attributed to photocatalysis. Competitive action of inorganic ions and humic substances for hydroxyl radicals during photocatalytic experiments, as well as humic substances physically screening the cells from UV and hydroxyl radical attack resulted in low rates of disinfection. A decrease in colony size (from 1.5 to 0.3 mm) was noted during photocatalytic experiments. The smaller than average colonies were thought to occur during sublethal (•) OH and O(2) (•-) attack. Catalyst fouling was observed following experiments in surface water and the ability to regenerate the surface was demonstrated using photocatalytic degradation of oxalic acid as a model test system
Resumo:
Nitrate reduction with nanoscale zero-valent iron (NZVI) was reported as a potential technology to remove nitrate from nitrate-contaminated water. In this paper, nitrate reduction with NZVI prepared by hydrogen reduction of natural goethite (NZVI-N, -N represents natural goethite) and hydrothermal goethite (NZVI-H, -H represents hydrothermal goethite) was conducted. Besides, the effects of reaction time, nitrate concentration, iron-to-nitrate ratio on nitrate removal rate over NZVI-H and NZVI-N were investigated. To prove their excellent nitrate reduction capacities, NZVI-N and NZVI-H were compared with ordinary zero-valent iron (OZVI-N) through the static experiments. Based on all above investigations, the mechanism of nitrate reduction with NZVI-N was proposed. The result showed that reaction time, nitrate concentration, iron-to-nitrate ratio played an important role in nitrate reduction by NZVI-N and NZVI-H. Compared with OZVI, NZVI-N and NZVI-H showed little relationship with pH. And NZVI-N for nitrate composition offers a higher stability than NZVI-H because of the existence of Al-substitution. Furthermore, NZVI-N, prepared by hydrogen reduction of goethite, has higher activity for nitrate reduction and the products contain hydrogen, nitrogen, NH 4 +, a little nitrite, but no NOx, meanwhile NZVI-N was oxidized to Fe 2+. It is a relatively easy and cost-effective method for nitrate removal, so NZVI-N reducing nitrate has a great potential application in nitrate removal of groundwater. © 2012 Elsevier B.V.
Resumo:
Biotites and muscovites from a gneiss have been experimentally shocked between 18 and 70 GPa using powder-propellant guns at NASA Johnson Space Center and at the California Institute of Technology. This study shows that shock in biotite and muscovite can produce homogeneous and devolatilized glasses within microseconds. Shock-deformed micas display fracturing, kinking, and complex extinction patterns over the entire pressure range investigated. However, these deformation features are not a sensitive pressure indicator. Localized melting of micas begins at 33 GPa and goes to completion at 70 GPa. Melted biotite and muscovite are optically opaque, but show extensive microvesiculation and flow when observed with the SEM. Electron diffraction confirms that biotite and muscovite have transformed to a glass. The distribution of vesicles in shock-vitrified mica shows escape of volatiles within the short duration of the shock experiment. Experimentally shocked biotite and muscovite undergo congruent melting. Compositions of the glasses are similar to the unshocked micas except for volatiles (H2O loss and K loss). These unusual glasses derived from mica may be quenched by rapid cooling conditions during the shock experiment. Based on these results, the extremely low H2O content of tektites may be reconciled with a terrestrial origin by impact. Release of volatiles in shock-melted micas affects the melting behavior of coexisting dry silicates during the short duration of the shock experiment. Transportation and escape of volatiles released from shock-melted micas may provide plausible mechanisms for the origin of protoatmospheres on terrestrial planets, hydrothermal activity on phyllosilicate-rich meteorite parent bodies, and fluid entrapment in meteorites.