990 resultados para Hydrogen permeation current


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using a suitable mathematical model, computations of power/follow current in surge diverters (lightning arresters) have been made from the known short-circuit capacity of the power-frequency source and the nonlinear resistor characteristics. Also the effect of the initiation angle is studied. Typical verifications with the available data have been carried out. The influence of arc drop in the surge-diverter spark gap is neglected.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper advocates the use of active current and potential transducers for proper utilisation of fast protective relays. The active current transducer faithfully transforms the primary current containing a slowly decaying d.c. component, thereby providing a good transient response. The active potential transducer helps in fast extinction of ferroresonance oscillations. Results oflaboratory investigations are also presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

L-PGlu-(2-proPyl)-L-His-L-ProNH(2) (NP-647) is a CNS active thyrotropin-releasing hormone (TRH) analog with potential application in various CNS disorders including seizures. In the present study, mechanism of action for protective effect of NP-647 was explored by studying role of NP-647 on epileptiform activity and sodium channels by using patch-clamp methods. Epileptiform activity was induced in subicular pyramidal neurons of hippocampal slice of rat by perfusing 4-aminopyridine (4-AP) containing Mg(+2)-free normal artificial cerebrospinal fluid (nACSF). Increase in mean firing frequency was observed after perfusion of 4-AP and zero Mg(+2) (2.10+/-0.47 Hz) as compared with nACSF (0.12+/-0.08 Hz). A significant decrease in mean firing frequency (0.61+/-0.22 Hz), mean frequency of epileptiform events (0.03+/-0.02 Hz vs. 0.22+/-0.05 Hz of 4-AP+0 Mg), and average number of action potentials in paroxysmal depolarization shift-burst (2.54+/-1.21 Hz vs. 8.16+/-0.88 Hz of 4-AP +0 Mg) was observed. A significant reduction in peak dV/dt (246+/-19 mV ms(-1) vs. 297 18 mV ms-1 of 4-AP+0 Mg) and increase (1.332+/-0.018 ms vs. 1.292+/-0.019 ms of 4-AP+0 Mg) in time required to reach maximum depolarization were observed indicating role of sodium channels. Concentration-dependent depression of sodium current was observed after exposure to dorsal root ganglion neurons to NP-647. NP-647 at different concentrations (1, 3, and 10 mu M) depressed sodium current (15+/-0.5%, 50+/-2.6%, and 75+/-0.7%, respectively). However, NP-647 did not show change in the peak sodium current in CNa18 cells. Results of present study demonstrated potential of NP-647 in the inhibition of epileptiform activity by inhibiting sodium channels indirectly. (C) 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrochemical oxidation of sodium borohydride (NaBH(4)) and ammonia borane (NH(3)BH(3)) (AB) have been studied on titanium carbide electrode. The oxidation is followed by using cyclic voltammetry, chronoamperometry and polarization measurements. A fuel cell with TiC as anode and 40 wt% Pt/C as cathode is constructed and the polarization behaviour is studied with NaBH(4) as anodic fuel and hydrogen peroxide as catholyte. A maximum power density of 65 mW cm(-2) at a load current density of 83 mA cm(-2) is obtained at 343 K in the case of borhydride-based fuel cell and a value of 85 mW cm(-2) at 105 mA cm(-2) is obtained in the case of AB-based fuel cell at 353 K. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The rapidly depleting petroleum feed stocks and increasing green house gas emissions around the world has necessitated a search for alternative renewable energy sources. Hydrogen with molecular weight of 2.016 g/mol and high chemical energy per mass equal to 142 MJ/kg has clearly emerged as an alternative to hydrocarbon fuels. Means for safe and cost effective storage are needed for widespread usage of hydrogen as a fuel.Chemical storage is the one of the safer ways to store hydrogen compared to compressed and liquefied hydrogen. It involves storing hydrogen in chemical bonds in molecules and materials where an on-board reaction is used to release hydrogen. Ammonia–borane, (AB,H3N·BH3) with a potential capacity of 19.6 wt% is considered a very promising solid state hydrogen storage material. It is thermally stable at ambient temperatures. There are two major routes for the generation of H2 from AB: catalytic hydrolysis/alcoholysis and catalytic thermal decomposition. There has been a flurry of research activity on the generation of H2 from AB recently. The present review deals with an overview of our efforts in developing cost-effective nanocatalysts for hydrogen generation from ammonia borane in protic solvents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The data obtained in the earlier parts of this series for the donor and acceptor end parameters of N-H. O and O-H. O hydrogen bonds have been utilised to obtain a qualitative working criterion to classify the hydrogen bonds into three categories: “very good” (VG), “moderately good” (MG) and weak (W). The general distribution curves for all the four parameters are found to be nearly of the Gaussian type. Assuming that the VG hydrogen bonds lie between 0 and ± la, MG hydrogen bonds between ± 1s̀ and ± 2s̀, W hydrogen bonds beyond ± 2s̀ (where s̀ is the standard deviation), suitable cut-off limits for classifying the hydrogen bonds in the three categories have been derived. These limits are used to get VG and MG ranges for the four parameters 1 and θ (at the donor end) and ± and ± (at the acceptor end). The qualitative strength of a hydrogen bond is decided by the cumulative application of the criteria to all the four parameters. The criterion has been further applied to some practical examples in conformational studies such as α-helix and can be used for obtaining suitable location of hydrogen atoms to form good hydrogen bonds. An empirical approach to the energy of hydrogen bonds in the three categories has also been presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A major myonecrotic zinc containing metalloprotease `malabarin' with thrombin like activity was purified by the combination of gel permeation and anion exchange chromatography from T. malabaricus snake venom. MALDI-TOF analysis of malabarin indicated a molecular mass of 45.76 kDa and its N-terminal sequence was found to be Ile-Ile-Leu-Pro(Leu)-Ile-Gly-Val-Ile-Leu(Glu)-Thr-Thr. Atomic absorption spectral analysis of malabarin raveled the association of zinc metal ion. Malabarin is not lethal when injected i.p. or i.m. but causes extensive hemorrhage and degradation of muscle tissue within 24 hours. Sections of muscle tissue under light microscope revealed hemorrhage and congestion of blood vessel during initial stage followed by extensive muscle fiber necrosis with elevated levels of serum creatine kinase and lactate dehydrogenase activity. Malabarin also exhibited strong procoagulant action and its procoagulant action is due to thrombin like activity; it hydrolyzes fibrinogen to form fibrin clot. The enzyme preferentially hydrolyzes A alpha followed by B beta subunits of fibrinogen from the N-terminal region and the released products were identified as fibrinopeptide A and fibrinopeptide B by MALDI. The myonecrotic, fibrinogenolytic and subsequent procoagulant activities of malabarin was neutralized by specific metalloprotease inhibitors such as EDTA, EGTA and 1, 10-phenanthroline but not by PMSF a specific serine protease inhibitor. Since there is no antivenom available to neutralize local toxicity caused by T. malabaricus snakebite, EDTA chelation therapy may have more clinical relevance over conventional treatment.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Combustion synthesized oxide and vanadate compounds (CeO2, Fe2O3, CeVO4, and FeVO4) were tested for catalytic hydrogen combustion. The compounds were characterized by X-ray diffraction and X-ray photoelectron spectroscopy. All the four compounds showed good activity and stability for catalytic hydrogen combustion and more than 95% conversion was observed over all the compounds within 500 degrees C. The mechanisms for the reaction over the different classes of compounds (cerium-based and iron-based compounds) were proposed on the basis of spectroscopic observations. The main difference in the mechanisms was in the nature of adsorption of H2 over the sites. The elementary processes for the reaction were proposed, corresponding rate expressions were derived, and the rate parameters for the reaction were estimated using nonlinear regression. Langmuir-Hinshelwood and Eley-Rideal mechanisms were also tested for the reaction and the proposed mechanism was compared with these mechanisms. (c) 2011 American Institute of Chemical Engineers AIChE J, 2012

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In todays era of energy crisis and global warming, hydrogen has been projected as a sustainable alternative to depleting CO2-emitting fossil fuels. However, its deployment as an energy source is impeded by many issues, one of the most important being storage. Chemical hydrogen storage materials, in particular B?N compounds such as ammonia borane, with a potential storage capacity of 19.6 wt?% H2 and 0.145 kg?H?2?L-1, have been intensively studied from the standpoint of addressing the storage issues. Ammonia borane undergoes dehydrogenation through hydrolysis at room temperature in the presence of a catalyst, but its practical implementation is hindered by several problems affecting all of the chemical compounds in the reaction scheme, including ammonia borane, water, borate byproducts, and hydrogen. In this Minireview, we exhaustively survey the state of the art, discuss the fundamental problems, and, where applicable, propose solutions with the prospect of technological applications.