955 resultados para Human androgen receptor gene
Resumo:
Genes of interest can be targeted specifically to respiratory epithelial cells in intact animals with high efficiency by exploiting the receptor-mediated endocytosis of the polymeric immunoglobulin receptor. A DNA carrier, consisting of the Fab portion of polyclonal antibodies raised against rat secretory component covalently linked to poly-L-lysine, was used to introduce plasmids containing different reporter genes into airway epithelial cells in vivo. We observed significant levels of luciferase enzyme activity in protein extracts from the liver and lung, achieving maximum values of 13,795 +/- 4,431 and 346,954 +/- 199,120 integrated light units (ILU) per milligram of protein extract, respectively. No luciferase activity was detected in spleen or heart, which do not express the receptor. Transfections using complexes consisting of an irrelevant plasmid (pCMV lacZ) bound to the bona fide carrier or the expression plasmid (pGEMluc) bound to a carrier based on an irrelevant Fab fragment resulted in background levels of luciferase activity in all tissues examined. Thus, only tissues that contain cells bearing the polymeric immunoglobulin receptor are transfected, and transfection cannot be attributed to the nonspecific uptake of an irrelevant carrier-DNA complex. Specific mRNA from the luciferase gene was also detected in the lungs of transfected animals. To determine which cells in the lungs are transfected by this method, DNA complexes were prepared containing expression plasmids with genes encoding the bacterial beta-galactosidase or the human interleukin 2 receptor. Expression of these genes was localized to the surface epithelium of the airways and the submucosal glands, and not the bronchioles and alveoli. Receptor-mediated endocytosis can be used to introduce functional genes into the respiratory epithelium of rats, and may be a useful technique for gene therapy targeting the lung.
Resumo:
The retinoid X receptor beta (RXR beta; H-2RIIBP) forms heterodimers with various nuclear hormone receptors and binds multiple hormone response elements, including the estrogen response element (ERE). In this report, we show that endogenous RXR beta contributes to ERE binding activity in nuclear extracts of the human breast cancer cell line MCF-7. To define a possible regulatory role of RXR beta regarding estrogen-responsive transcription in breast cancer cells, RXR beta and a reporter gene driven by the vitellogenin A2 ERE were transfected into estrogen-treated MCF-7 cells. RXR beta inhibited ERE-driven reporter activity in a dose-dependent and element-specific fashion. This inhibition occurred in the absence of the RXR ligand 9-cis retinoic acid. The RXR beta-induced inhibition was specific for estrogen receptor (ER)-mediated ERE activation because inhibition was observed in ER-negative MDA-MB-231 cells only following transfection of the estrogen-activated ER. No inhibition of the basal reporter activity was observed. The inhibition was not caused by simple competition of RXR beta with the ER for ERE binding, since deletion mutants retaining DNA binding activity but lacking the N-terminal or C-terminal domain failed to inhibit reporter activity. In addition, cross-linking studies indicated the presence of an auxiliary nuclear factor present in MCF-7 cells that contributed to RXR beta binding of the ERE. Studies using known heterodimerization partners of RXR beta confirmed that RXR beta/triiodothyronine receptor alpha heterodimers avidly bind the ERE but revealed the existence of another triiodothyronine-independent pathway of ERE inhibition. These results indicate that estrogen-responsive genes may be negatively regulated by RXR beta through two distinct pathways.
Resumo:
Calcium has a pivotal role in biological functions, and serum calcium levels have been associated with numerous disorders of bone and mineral metabolism, as well as with cardiovascular mortality. Here we report results from a genome-wide association study of serum calcium, integrating data from four independent cohorts including a total of 12,865 individuals of European and Indian Asian descent. Our meta-analysis shows that serum calcium is associated with SNPs in or near the calcium-sensing receptor (CASR) gene on 3q13. The top hit with a p-value of 6.3 x 10(-37) is rs1801725, a missense variant, explaining 1.26% of the variance in serum calcium. This SNP had the strongest association in individuals of European descent, while for individuals of Indian Asian descent the top hit was rs17251221 (p = 1.1 x 10(-21)), a SNP in strong linkage disequilibrium with rs1801725. The strongest locus in CASR was shown to replicate in an independent Icelandic cohort of 4,126 individuals (p = 1.02 x 10(-4)). This genome-wide meta-analysis shows that common CASR variants modulate serum calcium levels in the adult general population, which confirms previous results in some candidate gene studies of the CASR locus. This study highlights the key role of CASR in calcium regulation.
Resumo:
BACKGROUND: Only 25% of IVF transfer cycles lead to a clinical pregnancy, calling for continued technical progress but also more in depth analysis of patients' individual characteristics. The interleukin-1 (IL-1) system and matrix metalloproteinases (MMPs) are strongly implicated in embryo implantation. The genes coding for IL-1Ra (gene symbol IL-1RN), IL-1beta, MMP2 and MMP9 bear functional polymorphisms. We analysed the maternal genetic profile at these polymorphic sites in IVF patients, to determine possible correlations with IVF outcome. METHODS: One hundred and sixty women undergoing an IVF cycle were enrolled and a buccal smear was obtained. The presence of IL-1RN variable number of tandem repeats and IL-1B + 3953, MMP2-1306 and MMP9-1562 single nucleotide substitutions were determined. Patients were divided into pregnancy failures (119), biochemical pregnancies (8) and clinical pregnancies (33). RESULTS: There was a 40% decrease in IL-1RN*2 allele frequency (P = 0.024) and a 45% decrease in IL-1RN*2 carrier status in the clinical pregnancy group as compared to the pregnancy failure group (P = 0.017). This decrease was still statistically significant after a multivariate logistic regression analysis. The likelihood of a clinical pregnancy was decreased accordingly in IL-1RN*2 carriers: odds ratio = 0.349, 95% confidence interval = 0.2-0.8, P = 0.017. The IL-1B, MMP2 and MMP9 polymorphisms showed no correlation with IVF outcome. CONCLUSIONS: IL-1RN*2 allele carriage is associated with a poor prognosis of achieving a pregnancy after IVF.
Resumo:
TLR4 (Toll-like receptor 4) is essential for sensing the endotoxin of Gram-negative bacteria. Mutations or deletion of the TLR4 gene in humans or mice have been associated with altered predisposition to or outcome of Gram-negative sepsis. In the present work, we studied the expression and regulation of the Tlr4 gene of mouse. In vivo, TLR4 levels were higher in macrophages compared with B, T or natural killer cells. High basal TLR4 promoter activity was observed in RAW 264.7, J774 and P388D1 macrophages transfected with a TLR4 promoter reporter vector. Analysis of truncated and mutated promoter constructs identified several positive [two Ets (E twenty-six) and one AP-1 (activator protein-1) sites] and negative (a GATA-like site and an octamer site) regulatory elements within 350 bp upstream of the transcriptional start site. The myeloid and B-cell-specific transcription factor PU.1 bound to the proximal Ets site. In contrast, none among PU.1, Ets-1, Ets-2 and Elk-1, but possibly one member of the ESE (epithelium-specific Ets) subfamily of Ets transcription factors, bound to the distal Ets site, which was indispensable for Tlr4 gene transcription. Endotoxin did not affect macrophage TLR4 promoter activity, but it decreased TLR4 steady-state mRNA levels by increasing the turnover of TLR4 transcripts. TLR4 expression was modestly altered by other pro- and anti-inflammatory stimuli, except for PMA plus ionomycin which strongly increased promoter activity and TLR4 mRNA levels. The mouse and human TLR4 genes were highly conserved. Yet, notable differences exist with respect to the elements implicated in gene regulation, which may account for species differences in terms of tissue expression and modulation by microbial and inflammatory stimuli.
Resumo:
A complementary DNA for a glucagon-like peptide-1 receptor was isolated from a human pancreatic islet cDNA library. The isolated clone encoded a protein with 90% identity to the rat receptor. In stably transfected fibroblasts, the receptor bound [125I]GLP-1 with high affinity (Kd = 0.5 nM) and was coupled to adenylate cyclase as detected by a GLP-1-dependent increase in cAMP production (EC50 = 93 pM). Two peptides from the venom of the lizard Heloderma suspectum, exendin-4 and exendin-(9-39), displayed similar ligand binding affinities to the human GLP-1 receptor. Whereas exendin-4 acted as an agonist of the receptor, inducing cAMP formation, exendin-(9-39) was an antagonist of the receptor, inhibiting GLP-1-induced cAMP production. Because GLP-1 has been proposed as a potential agent for treatment of NIDDM, our present data will contribute to the characterization of the receptor binding site and the development of new agonists of this receptor.
Resumo:
The CD44 adhesion receptor is silenced in highly malignant neuroblastomas (NBs) with MYCN amplification. Because its functional expression is associated with decreased tumorigenic properties, CD44 behaves as a tumor suppressor gene in NB and other cancers. Given that the precise mechanisms responsible for CD44 silencing are not elucidated, we investigated whether CD44 expression could be regulated by DNA hypermethylation. The methylation status of CD44 gene promoter and exon 1 regions was analyzed in 12 NB cell lines and 21 clinical samples after bisulfite genomic modification, followed by PCR and single-strand conformation polymorphism analysis and genomic sequencing. The results showed that almost all CD44-negative cell lines displayed hypermethylation in both regions, whereas all CD44-expressing cell lines were unmethylated. These observations correlated with the ability to restore CD44 mRNA and protein expression by treatment of CD44-negative cells with the 5-aza-2'-deoxycytidine demethylating agent. In contrast, no CD44 gene hypermethylation could be detected in 21 NB clinical samples of different stages, irrespective of CD44 expression. Although our results suggest that aberrant methylation of promoter and exon 1 regions is involved in CD44 silencing in NB cell lines, they also indicate that methylation of unidentified regulatory sequences or methylation-independent mechanisms also control the expression of CD44 in primary NB tumors and cell lines. We therefore conclude that CD44 silencing is controlled by complex and tumor cell-specific processes, including gene hypermethylation. Further investigation of other mechanisms and genes involved in CD44 regulation will be needed before demethylation-mediated reactivation of the CD44 gene can be considered as therapeutic strategy for neuroblastoma and perhaps other related cancers.
Resumo:
Muscle-type carnitine palmitoyltransferase 1 (CPT1β) is considered to be the gene that controls fatty acid mitochondrial β-oxidation. A functional peroxisome proliferator-activated receptor (PPAR) responsive element (PPRE) and a myocite-specific (MEF2) site that binds MEF2A and MEF2C in the promoter of this gene had been previously identified. We investigated the roles of the PPRE and the MEF2 binding sites and the potential interaction between PPARα and MEF2C regulating the CPT1β gene promoter. Mutation analysis indicated that the MEF2 site contributed to the activation of the CPT1β promoter by PPAR in C2C12 cells. The reporter construct containing the PPRE and the MEF2C site was synergistically activated by co-expression of PPAR, retinoid X receptor (RXR) and MEF2C in non-muscle cells. Moreover, protein-binding assays demonstrated that MEF2C and PPAR specifically bound to one another in vitro. Also for the synergistic activation of the CPT1β gene promoter by MEF2C and PPARα-RXRα, a precise arrangement of its binding sites was essential.
Resumo:
AIM/HYPOTHESIS: IL-6 induces insulin resistance by activating signal transducer and activator of transcription 3 (STAT3) and upregulating the transcription of its target gene SOCS3. Here we examined whether the peroxisome proliferator-activated receptor (PPAR)β/δ agonist GW501516 prevented activation of the IL-6-STAT3-suppressor of cytokine signalling 3 (SOCS3) pathway and insulin resistance in human hepatic HepG2 cells. METHODS: Studies were conducted with human HepG2 cells and livers from mice null for Pparβ/δ (also known as Ppard) and wild-type mice. RESULTS: GW501516 prevented IL-6-dependent reduction in insulin-stimulated v-akt murine thymoma viral oncogene homologue 1 (AKT) phosphorylation and in IRS-1 and IRS-2 protein levels. In addition, treatment with this drug abolished IL-6-induced STAT3 phosphorylation of Tyr⁷⁰⁵ and Ser⁷²⁷ and prevented the increase in SOCS3 caused by this cytokine. Moreover, GW501516 prevented IL-6-dependent induction of extracellular-related kinase 1/2 (ERK1/2), a serine-threonine protein kinase involved in serine STAT3 phosphorylation; the livers of Pparβ/δ-null mice showed increased Tyr⁷⁰⁵- and Ser⁷²⁷-STAT3 as well as phospho-ERK1/2 levels. Furthermore, drug treatment prevented the IL-6-dependent reduction in phosphorylated AMP-activated protein kinase (AMPK), a kinase reported to inhibit STAT3 phosphorylation on Tyr⁷⁰⁵. In agreement with the recovery in phospho-AMPK levels observed following GW501516 treatment, this drug increased the AMP/ATP ratio and decreased the ATP/ADP ratio. CONCLUSIONS/INTERPRETATION: Overall, our findings show that the PPARβ/δ activator GW501516 prevents IL-6-induced STAT3 activation by inhibiting ERK1/2 phosphorylation and preventing the reduction in phospho-AMPK levels. These effects of GW501516 may contribute to the prevention of cytokine-induced insulin resistance in hepatic cells.
Resumo:
The T3 complex is known to be expressed on the cell surface of mature T cells together with either the alpha-beta heterodimeric T cell receptor (TCR) or the TCR gamma protein. In a number of immature T cell malignancies, however, T3 has been described exclusively in the cytoplasm. We have investigated five such T cell lines with cytoplasmic T3 and could demonstrate by biosynthetic labeling the presence of the alpha and beta chains of the TCR in the cytoplasm of two of them, CEM and Ichikawa. No surface TCR alpha-beta protein could be detected by staining with the WT31 antibody. These observations, therefore, argue against the concept that expression of the TCR alpha chain controls the surface expression of the T3/TCR complex. Interestingly, phorbol 12-myristate 13-acetate (PMA) induced cell surface expression of T3 protein in these two cell lines only. Moreover, on surface-iodinated CEM cells no association of T3 and TCR molecules could be demonstrated after treatment with PMA, and expression of TCR alpha and beta chains was limited to the cytoplasm. In Ichikawa cells, however, PMA induced surface expression of a mature T3/TCR complex. Our findings indicate that separate regulatory mechanisms may exist for the surface expression of the T3 proteins and for the assembly of the T3/TCR complex.
Resumo:
OBJECTIVES: Prorenin can be detected in plasma of hypertensive patients. If detected in patients with primary aldosteronism could implicate prorenin in the development of primary aldosteronism. To address this issue, we measured the plasma prorenin levels in primary aldosteronism patients, the expression of the prorenin receptor (PRR) in the normal human adrenocortical zona glomerulosa and aldosterone-producing adenoma (APA), and we investigated the functional effects of PRR activation in human adrenocortical cells. METHOD: Plasma renin activity, aldosterone, and active and total trypsin-activated renin were measured in primary aldosteronism patients, essential hypertensive patients, and healthy individuals, and then prorenin levels were calculated. Localization and functional role of PRR were investigated in human and rat tissues, and aldosterone-producing cells. RESULTS: Primary aldosteronism patients had detectable plasma levels of prorenin. Using digital-droplet real-time PCR, we found a high PRR-to-porphobilinogen deaminase ratio in both the normal adrenal cortex and APAs. Marked expression of the PRR gene and protein was also found in HAC15 cells. Immunoblotting, confocal, and immunogold electron microscopy demonstrated PRR at the cell membrane and intracellularly. Renin and prorenin significantly triggered both CYP11B2 expression (aldosterone synthase) and ERK1/2 phosphorylation, but only CYP11B2 transcription was prevented by aliskiren. CONCLUSION: The presence of detectable plasma prorenin in primary aldosteronism patients, and the high expression of PRR in the normal human adrenal cortex, APA tissue, CD56+ aldosterone-producing cells, along with activation of CYP11B2 synthesis and ERK1/2 phosphorylation, suggest that the circulating and locally produced prorenin may contribute to the development or maintenance of human primary aldosteronism.
Resumo:
The distal cytoplasmic motifs of leukemia inhibitory factor receptor α-chain (LIFRα-CT3) can independently induce intracellular myeloid differentiation in acute myeloid leukemia (AML) cells by gene transfection; however, there are significant limitations in the potential clinical use of these motifs due to liposome-derived genetic modifications. To produce a potentially therapeutic LIFRα-CT3 with cell-permeable activity, we constructed a eukaryotic expression pcDNA3.0-TAT-CT3-cMyc plasmid with a signal peptide (ss) inserted into the N-terminal that codes for an ss-TAT-CT3-cMyc fusion protein. The stable transfection of Chinese hamster ovary (CHO) cells via this vector and subsequent selection by Geneticin resulted in cell lines that express and secrete TAT-CT3-cMyc. The spent medium of pcDNA3.0-TAT-CT3-cMyc-transfected CHO cells could be purified using a cMyc-epitope-tag agarose affinity chromatography column and could be detected via SDS-PAGE, with antibodies against cMyc-tag. The direct administration of TAT-CT3-cMyc to HL-60 cell culture media caused the enrichment of CT3-cMyc in the cytoplasm and nucleus within 30 min and led to a significant reduction of viable cells (P < 0.05) 8 h after exposure. The advantages of using this mammalian expression system include the ease of generating TAT fusion proteins that are adequately transcripted and the potential for a sustained production of such proteins in vitro for future AML therapy.
Resumo:
The research work which was carried out to characterization of wastes from natural rubber and rubber wood processing industries and their utilization for biomethanation. Environmental contamination is an inevitable consequence of human activity. The liquid and solid wastes from natural rubber based industries were: characterized and their use for the production of biogas investigated with a view to conserve conventional energy, and to mitigate environmental degradation.Rubber tree (flevea brasiliensis Muell. Arg.), is the most important commercial source of natural rubber and in india. Recently, pollution from the rubber processing factories has become very serious due to the introduction of modern methods and centralized group processing practices.The possibility of the use of spent slurry as organic manure is discussed.l0 percent level of PSD, the activity of cellulolytic, acid producing,proteolytic, lipolytic and methanogenic bacteria were more in the middle stage of methanogenesis.the liquid wastes from rubber processing used as diluents in combination with PSD, SPE promoted more biogas production with high methane content in the gas.The factors that favour methane production like TS, VS, cellulose and hemicellulose degradation were favoured in this treatment which led to higher methane biogenesis.The results further highlight ways and means to use agricultural wastes as alternative sources of energy.
Resumo:
Since the alkyl esters of p-hydroxybenzoic acid (parabens) can be measured intact in the human breast and possess oestrogenic properties, it has been suggested that they could contribute to an aberrant burden of oestrogen signalling in the human breast and so play a role in the rising incidence of breast cancer. However, although parabens have been shown to regulate a few single genes (reporter genes, pS2, progesterone receptor) in a manner similar to that of 17 beta-oestradiol, the question remains as to the full extent of the similarity in the overall gene profile induced in response to parabens compared with 17 beta-oestradiol. The GE-Amersham CodeLink 20 K human expression microarray system was used to profile the expression of 19881 genes in MCF7 human breast cancer cells following a 7-day exposure to 5 x 10(-4) m methylparaben, 10(-5) m n-butylparaben and 10(-8) m 17 beta-oestradiol. At these concentrations, the parabens gave growth responses in MCF7 cells of similar magnitude to 17 beta-oestradiol. The study identified genes which are upregulated or downregulated to a similar extent by methylparaben, n-butylparaben and 17 beta-oestradiol. However, the majority of genes were not regulated in the same way by all three treatments. Some genes responded differently to parabens from 17 beta-oestradiol, and furthermore, differences in expression of some genes could be detected even between the two individual parabens. Therefore, although parabens possess oestrogenic properties, their mimicry in terms of global gene expression patterns is not perfect and differences in gene expression profiles could result in consequences to the cells that are not identical to those following exposure to 17 beta-oestradiol. Copyright (c) 2006 John Wiley & Sons, Ltd.
Resumo:
Cell culture models of antioestrogen resistance often involve applying selective pressures of oestrogen deprivation simultaneously with addition of tamoxifen or fulvestrant (Faslodex, ICI 182,780) which makes it difficult to distinguish events in development of antioestrogen resistance from those in loss of response to oestrogen or other components. We describe here time courses of loss of antioestrogen response using either oestrogen-maintained or oestrogen-deprived MCF7 cells in which the only alteration to the culture medium was addition of 10(-6) M tamoxifen or 10(-7) M fulvestrant. In both oestrogen-maintained and oestrogen-deprived models, loss of growth response to tamoxifen was not associated with loss of response to fulvestrant. However, loss of growth response to fulvestrant was associated in both models with concomitant loss of growth response to tamoxifen. Measurement of oestrogen receptor alpha (ER alpha) and oestrogen receptor beta (ER beta) mRNA by real-time RT-PCR together with ER alpha and ER beta protein by Western immunoblotting revealed substantial changes to ER alpha levels but very little alteration to ER beta levels following development of antioestrogen resistance. In oestrogen-maintained cells, tamoxifen resistance was associated with raised levels of ERa mRNA/protein. However by contrast, in oestrogen-deprived MCF7 cells, where oestrogen deprivation alone had already resulted in increased levels of ERa mRNA/protein, long-term tamoxifen exposure now reduced ER alpha levels. Whilst long-term exposure to fulvestrant reduced ERa. mRNA/protein levels in the oestrogen-maintained cells to a level barely detectable by Western immunoblotting and non-functional in inducing gene expression (ERE-LUC reporter or pS2), in oestrogen-deprived cells the reduction was much less substantial and these cells retained an oestrogen-induction of both the ERE-LUC reporter gene and the endogenous pS2 gene which could still be inhibited by antioestrogen. This demonstrates that whilst ER alpha can be abrogated by fulvestrant and increased by tamoxifen in some circumstances, this does not always hold true and mechanisms other than alteration to ER must be involved in the development of antioestrogen resistant growth. (c) 2006 Elsevier Ltd. All rights reserved.