830 resultados para Housing forecasting


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study aims to contribute on the forecasting literature in stock return for emerging markets. We use Autometrics to select relevant predictors among macroeconomic, microeconomic and technical variables. We develop predictive models for the Brazilian market premium, measured as the excess return over Selic interest rate, Itaú SA, Itaú-Unibanco and Bradesco stock returns. We nd that for the market premium, an ADL with error correction is able to outperform the benchmarks in terms of economic performance. For individual stock returns, there is a trade o between statistical properties and out-of-sample performance of the model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Our focus is on information in expectation surveys that can now be built on thousands (or millions) of respondents on an almost continuous-time basis (big data) and in continuous macroeconomic surveys with a limited number of respondents. We show that, under standard microeconomic and econometric techniques, survey forecasts are an affine function of the conditional expectation of the target variable. This is true whether or not the survey respondent knows the data-generating process (DGP) of the target variable or the econometrician knows the respondents individual loss function. If the econometrician has a mean-squared-error risk function, we show that asymptotically efficient forecasts of the target variable can be built using Hansens (Econometrica, 1982) generalized method of moments in a panel-data context, when N and T diverge or when T diverges with N xed. Sequential asymptotic results are obtained using Phillips and Moon s (Econometrica, 1999) framework. Possible extensions are also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study aims to contribute on the forecasting literature in stock return for emerging markets. We use Autometrics to select relevant predictors among macroeconomic, microeconomic and technical variables. We develop predictive models for the Brazilian market premium, measured as the excess return over Selic interest rate, Itaú SA, Itaú-Unibanco and Bradesco stock returns. We find that for the market premium, an ADL with error correction is able to outperform the benchmarks in terms of economic performance. For individual stock returns, there is a trade o between statistical properties and out-of-sample performance of the model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One looming question has persisted in the minds of economists the world over in the aftermath of the 2007-2008 American Housing and Debt Crisis: How did it begin and who is responsible for making this happen? Another two-part question is: What measures were implemented to help end the crisis and what changes are being implemented to ensure that it will never happen again? Many speculate that the major contributing factor was the repeal of the Glass-Steagall Act in 1999 that prompted a virtual feeding frenzy among the banking community when new calls from Capitol Hill encouraged home ownership in America as well as the secondary mortgage market which skyrocketed thereafter. The Glass-Steagall Act will be among many of the topics explored in this paper along with the events leading up to the 2007-2008 housing/debt crisis as well as the aftermath.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper discusses social housing policy in Brazil since the 1990s by analyzing government programs’ institutional arrangements, their sources of revenues and the formatting of related financial systems. The conclusion suggests that all these arrangements have not constituted a comprehensive housing policy with the clear aim of serving to enhance housing conditions in the country. Housing ‘policies’ since the 1990s – as proposed by Fernando Collor de Mello, Itamar Franco, Fernando Henrique Cardoso and ´ Luis Inacio Lula da Silva’s governments (in the latter case, despite much progress towards subsidized investment programs) – have sought to consolidate financial instruments in line with global markets, restructuring the way private interests operate within the system, a necessary however incomplete course of action. Different from rhetoric, this has resulted in failure as the more fundamental social results for the poor have not yet been achieved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper describes a novel neural model to electrical load forecasting in transformers. The network acts as identifier of structural features to forecast process. So that output parameters can be estimated and generalized from an input parameter set. The model was trained and assessed through load data extracted from a Brazilian Electric Utility taking into account time, current, tension, active power in the three phases of the system. The results obtained in the simulations show that the developed technique can be used as an alternative tool to become more appropriate for planning of electric power systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this work is to develop a methodology for electric load forecasting based on a neural network. Here, backpropagation algorithm is used with an adaptive process that based on fuzzy logic and using a decaying exponential function to avoid instability in the convergence process. This methodology results in fast training, when compared to the conventional formulation of backpropagation algorithm. The results are presented using data from a Brazilian Electric Company, and shows a very good performance for the proposal objective.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work presents a neural network based on the ART architecture ( adaptive resonance theory), named fuzzy ART& ARTMAP neural network, applied to the electric load-forecasting problem. The neural networks based on the ARTarchitecture have two fundamental characteristics that are extremely important for the network performance ( stability and plasticity), which allow the implementation of continuous training. The fuzzy ART& ARTMAP neural network aims to reduce the imprecision of the forecasting results by a mechanism that separate the analog and binary data, processing them separately. Therefore, this represents a reduction on the processing time and improved quality of the results, when compared to the Back-Propagation neural network, and better to the classical forecasting techniques (ARIMA of Box and Jenkins methods). Finished the training, the fuzzy ART& ARTMAP neural network is capable to forecast electrical loads 24 h in advance. To validate the methodology, data from a Brazilian electric company is used. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we present the results of the use of a methodology for multinodal load forecasting through an artificial neural network-type Multilayer Perceptron, making use of radial basis functions as activation function and the Backpropagation algorithm, as an algorithm to train the network. This methodology allows you to make the prediction at various points in power system, considering different types of consumers (residential, commercial, industrial) of the electric grid, is applied to the problem short-term electric load forecasting (24 hours ahead). We use a database (Centralised Dataset - CDS) provided by the Electricity Commission de New Zealand to this work.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A method for spatial electric load forecasting using elements from evolutionary algorithms is presented. The method uses concepts from knowledge extraction algorithms and linguistic rules' representation to characterize the preferences for land use into a spatial database. The future land use preferences in undeveloped zones in the electrical utility service area are determined using an evolutionary heuristic, which considers a stochastic behavior by crossing over similar rules. The method considers development of new zones and also redevelopment of existing ones. The results are presented in future preference maps. The tests in a real system from a midsized city show a high rate of success when results are compared with information gathered from the utility planning department. The most important features of this method are the need for few data and the simplicity of the algorithm, allowing for future scalability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A gestão colaborativa é, atualmente, um elemento-chave no contexto da gestão da cadeia de suprimentos. Neste artigo, o tema é abordado mediante a análise de um caso real, em que uma grande rede mundial de fast-food e seu prestador de serviço logístico (PSL) trabalharam conjuntamente no Brasil em um projeto-piloto para a implementação de um collaborative planning, forecasting, and replenishment (CPFR). O trabalho faz uso de uma metodologia de pesquisa-ação e apresenta as principais variáveis que influenciaram o projeto, abordando os processos necessários para a implementação e os pontos que favorecem o CPFR. Com base no caso estudado, o trabalho apresenta um conjunto de propostas sobre o papel dos agentes da cadeia em projetos dessa natureza. A gestão da cadeia de suprimentos por intermédio da coordenação direta de um PSL também permite demonstrar as possibilidades e dificuldades desse sistema, contribuindo com a visão colaborativa na cadeia de suprimentos a partir da relação entre seus agentes.