974 resultados para Horizontal-flow anaerobic immobilized biomass reactor
Resumo:
Chelonia mydas is a sea turtle that feeds and nests on the Brazilian coast and a disease called fibropapillomatosis is a threat to this species. Because of this, it is extremely necessary to determine a methodology that would enable the analysis of blood leukocyte function in these sea turtles. In order to achieve this aim, blood samples were collected from C. mydas with or without fibropapillomas captured on the São Paulo north coast. Blood samples were placed in tubes containing sodium heparin and were transported under refrigeration to the laboratory in sterile RPMI 1640 cell culture medium. Leukocytes were separated by density gradient using Ficoll-PaqueTM Plus, Amershan Biociences®. The following stimuli were applied in the assessment of leukocyte function: Phorbol Miristate-Acetate (PMA) for oxidative burst activity evaluation and Zymosan A (Saccharomyces cerevisiae) Bio Particles®, Alexa Fluor® 594 conjugate for phagocytosis evaluation. Three cell populations were identified: heterophils, monocytes and lymphocytes. Monocytes were the cells responsible for phagocytosis and oxidative burst.
Resumo:
A photometric procedure for the determination of ClO(-) in tap water employing a miniaturized multicommuted flow analysis setup and an LED-based photometer is described. The analytical procedure was implemented using leucocrystal violet (LCV; 4,4', 4 ''-methylidynetris (N, N-dimethylaniline), C(25)H(31)N(3)) as a chromogenic reagent. Solenoid micropumps employed for solutions propelling were assembled together with the photometer in order to compose a compact unit of small dimensions. After control variables optimization, the system was applied for the determination of ClO(-) in samples of tap water, and aiming accuracy assessment samples were also analyzed using an independent method. Applying the paired t-test between results obtained using both methods, no significant difference at the 95% confidence level was observed. Other useful features include low reagent consumption, 2.4 mu g of LCV per determination, a linear response ranging from 0.02 up to 2.0 mg L(-1) ClO(-), a relative standard deviation of 1.0% (n = 11) for samples containing 0.2 mg L(-1) ClO(-), a detection limit of 6.0 mu g L(-1) ClO(-), a sampling throughput of 84 determinations per hour, and a waste generation of 432 mu L per determination.
Resumo:
A new flow procedure based on multicommutation with chemiluminometric detection was developed to quantify gentamicin sulphate in pharmaceutical formulations. This approach is based on gentamicin's ability to inhibit the chemiluminometric reaction between luminol and hypochlorite in alkaline medium, causing a decrease in the analytical signal. The inhibition of the analytical signal is proportional to the concentration of gentamicin sulphate, within a linear range of 1 to 4 mu g mL(-1) with a coefficient variation <3%. A sample throughput of 55 samples h(-1) was obtained. The developed method is sensitive, simple, with low reagent consumption, reproducible, and inexpensive, and when applied to the analysis of pharmaceutical formulations (eye drops and injections) it gave results with RSD between 1.10 and 4.40%.
Resumo:
Searches for field horizontal-branch (FHB) stars in the halo of the Galaxy in the past have been carried out by several techniques, such as objective-prism surveys and visual or infrared photometric surveys. By choosing adequate color criteria, it is possible to improve the efficiency of identifying bona fide FHB stars among the other objects that exhibit similar characteristics, such as main-sequence A-stars, blue stragglers, subdwarfs, etc. In this work, we report the results of a spectroscopic survey carried out near the south Galactic pole intended to validate FHB stars originally selected from the HK objective-prism survey of Beers and colleagues, based on near-infrared color indices. A comparison between the stellar spectra obtained in this survey with theoretical stellar atmosphere models allows us to determine T(eff), log g, and [Fe/H] for 13 stars in the sample. Stellar temperatures were calculated from measured (B-V)(o), when this measurement was available (16 stars). The color index criteria adopted in this work are shown to correctly classify 30% of the sample as FHB, 25% as non-FHB (main-sequence stars and subdwarfes), whereas 40% could not be distinguished between FHB and main-sequence stars. We compare the efficacy of different color criteria in the literature intended to select FHB stars, and discuss the use of the Mg II 4481 line to estimate the metallicity.
Resumo:
Blends of milk fat and canola oil (MF:CNO) were enzymatically interesterified (EIE) by Rhizopus oryzne lipase immobilized on polysiloxane-polyvinyl alcohol (SiO(2)-PVA) composite, in a solvent-free system. A central composite design (CCD) was used to optimize the reaction, considering the effects of different mass fractions of binary blends of MF:CNO (50:50, 65:35 and 80:20) and temperatures (45, 55 and 65 degrees C) on the composition and texture properties of the interesterified products, taking the interesterification degree (ID) and consistency (at 10 degrees C) as response variables. For the ID variable both mass fraction of milk fat in the blend and temperature were found to be significant, while for the consistency only mass fraction of milk fat was significant. Empiric models for ID and consistency were obtained that allowed establishing the best interesterification conditions: blend with 65 % of milk fat and 35 %, of canola oil, and temperature of 45 degrees C. Under these conditions, the ID was 19.77 %) and the consistency at 10 degrees C was 56 290 Pa. The potential of this eco-friendly process demonstrated that a product could be obtained with the desirable milk fat flavour and better spreadability under refrigerated conditions.
Resumo:
The present paper studies the influence of different nutrients for the production of two cellulolytic enzymes: endo beta-1.4 glucanase and exo beta-1.4 glucanase by anaerobic fungi taken from cow rumen, that were fed a diet of corn silage and Brachiaria decumbens grass hay. During the enzymatic degradation assays, it was observed that the addition of some essential nutrients in the formulation of the culture medium contributed positively in the cellulolytic enzyme production, with exception of riboflavin. Such results contributed in the establishment of an effective method for the evaluation of enzymatic activities in anaerobic fibrolytic fungi. In this work, nutrients added to enrich the culture medium have successfully proven that they can be used as inoculating agents (inductors) in diets rich in ensilage with law nutritive value.
Resumo:
The possible states in the flow around two identical circular cylinders in tandem arrangements are investigated for configurations in the vicinity of the drag inversion separation. By means of numerical simulations, the hysteresis in the transition between the shedding regimes is studied and the relationship between (three-dimensional) secondary instabilities and shedding regime determination is addressed. The differences observed in the behavior of two- and three-dimensional flows are analyzed, and the regions of bistable flow are delimited. Very good agreement is found between the proposed scenario and results available in the literature. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3420111]
Resumo:
We measure directed flow (v(1)) for charged particles in Au + Au and Cu + Cu collisions at root s(NN) = 200 and 62.4 GeV, as a function of pseudorapidity (eta), transverse momentum (p(t)), and collision centrality, based on data from the STAR experiment. We find that the directed flow depends on the incident energy but, contrary to all available model implementations, not on the size of the colliding system at a given centrality. We extend the validity of the limiting fragmentation concept to v(1) in different collision systems, and investigate possible explanations for the observed sign change in v(1)(p(t)).
Resumo:
We present STAR results on the elliptic flow upsilon(2) Of charged hadrons, strange and multistrange particles from,root s(NN) = 200 GeV Au+Au collisions at the BNL Relativistic Heavy Ion Collider (RHIC). The detailed study of the centrality dependence of upsilon(2) over a broad transverse momentum range is presented. Comparisons of different analysis methods are made in order to estimate systematic uncertainties. To discuss the nonflow effect, we have performed the first analysis Of upsilon(2) with the Lee-Yang zero method for K(S)(0) and A. In the relatively low PT region, P(T) <= 2 GeV/c, a scaling with m(T) - m is observed for identified hadrons in each centrality bin studied. However, we do not observe nu 2(p(T))) scaled by the participant eccentricity to be independent of centrality. At higher PT, 2 1 <= PT <= 6 GeV/c, V2 scales with quark number for all hadrons studied. For the multistrange hadron Omega, which does not suffer appreciable hadronic interactions, the values of upsilon(2) are consistent with both m(T) - m scaling at low p(T) and number-of-quark scaling at intermediate p(T). As a function ofcollision centrality, an increase of p(T)-integrated upsilon(2) scaled by the participant eccentricity has been observed, indicating a stronger collective flow in more central Au+Au collisions.
Resumo:
Background: The Brazilian Amazon has suffered impacts from non-sustainable economic development, especially owing to the expansion of agricultural commodities into forest areas. The Tangara da Serra region, located in the southern of the Legal Amazon, is characterized by non-mechanized sugar cane production. In addition, it lies on the dispersion path of the pollution plume generated by biomass burning. The aim of this study was to assess the genotoxic potential of the atmosphere in the Tangara da Serra region, using Tradescantia pallida as in situ bioindicator. Methods: The study was conducted during the dry and rainy seasons, where the plants were exposed to two types of exposure, active and passive. Results: The results showed that in all the sampling seasons, irrespective of exposure type, there was an increase in micronucleus frequency, compared to control and that it was statistically significant in the dry season. A strong and significant relationship was also observed between the increase in micronucleus incidence and the rise in fine particulate matter, and hospital morbidity from respiratory diseases in children. Conclusions: Based on the results, we demonstrated that pollutants generated by biomass burning in the Brazilian Amazon can induce genetic damage in test plants that was more prominent during dry season, and correlated with the level of particulates and elevated respiratory morbidity.
Resumo:
Background This study aimed to evaluate the association between the total suspended particles (TSP) generated from burning sugar cane plantations and the incidence of hospital admissions from hypertension in the city of Araraquara. Methods The study was an ecological time-series study. Total daily records of hypertension (ICD 10th I10-15) were obtained from admitted patients of all ages in a hospital in Araraquara, Sao Paulo State, Brazil, from 23 March 2003 to 27 July 2004. The daily concentration of TSP (mu g/m(3)) was obtained using a Handi-Vol sampler placed in downtown Araraquara. The local airport provided daily measures of temperature and humidity. In generalised linear Poisson regression models, the daily number of hospital admissions for hypertension was considered to be the dependent variable and the daily TSP concentration the independent variable. Results TSP presented a lagged effect on hypertension admissions, which was first observed 1 day after a TSP increase and remained almost unchanged for the following 2 days. A 10 mu g/m(3) increase in the TSP 3 day moving average lagged in 1 day led to an increase in hypertension-related hospital admissions during the harvest period (12.5%, 95% CI 5.6% to 19.9%) that was almost 30% higher than during non-harvest periods (9.0%, 95% CI 4.0% to 14.3%). Conclusions Increases in TSP concentrations were associated with hypertension-related hospital admissions. Despite the benefits of reduced air pollution in urban cities achieved by using ethanol produced from sugar cane to power automobiles, areas where the sugar cane is produced and harvested were found to have increased public health risk.
Resumo:
Comparing the patterns of population differentiation among genetic markers with different modes of inheritance call provide insights into patterns of sex-biased dispersal and gene flow. The blue-and-yellow Macaw (Ara ararauna) is a Neotropical parrot with a broad geographic distribution ill South America. However, little is known about the natural history and current status Of remaining wild populations, including levels of genetic variability. The progressive decline and possible fragmentation of populations may endanger this species in the near future. We analyzed mitochondrial DNA (mtDNA) control-region sequences and six microsatellite 106 Of Blue-and-yellow Macaws sampled throughout their geographic range ill Brazil to describe population genetic Structure, to make inferences about historical demography and dispersal behavior, and to provide insight for conservation efforts. Analyses of population genetic structure based on mtDNA showed evidence of two major populations ill western and eastern Brazil that share a few low-frequency haplotypes. This phylogeographic pattern seems to have originated by the historical isolation of Blue-and-yellow Macaw populations similar to 374,000 years ago and has been maintained by restricted gene flow and female philopatry. By contrast, variation ill biparentally inherited microsatellites was not structured geographically, Male-biased dispersal and female philopatry best explain the different patterns observed in these two markers. Because females disperse less than males, the two regional populations with well-differentiated mtDNA haplogroups should be considered two different management units for conservation purposes. Received 4 November 2007 accepted 10 December 2008.
Resumo:
We describe an estimation technique for biomass burning emissions in South America based on a combination of remote-sensing fire products and field observations, the Brazilian Biomass Burning Emission Model (3BEM). For each fire pixel detected by remote sensing, the mass of the emitted tracer is calculated based on field observations of fire properties related to the type of vegetation burning. The burnt area is estimated from the instantaneous fire size retrieved by remote sensing, when available, or from statistical properties of the burn scars. The sources are then spatially and temporally distributed and assimilated daily by the Coupled Aerosol and Tracer Transport model to the Brazilian developments on the Regional Atmospheric Modeling System (CATT-BRAMS) in order to perform the prognosis of related tracer concentrations. Three other biomass burning inventories, including GFEDv2 and EDGAR, are simultaneously used to compare the emission strength in terms of the resultant tracer distribution. We also assess the effect of using the daily time resolution of fire emissions by including runs with monthly-averaged emissions. We evaluate the performance of the model using the different emission estimation techniques by comparing the model results with direct measurements of carbon monoxide both near-surface and airborne, as well as remote sensing derived products. The model results obtained using the 3BEM methodology of estimation introduced in this paper show relatively good agreement with the direct measurements and MOPITT data product, suggesting the reliability of the model at local to regional scales.
Resumo:
Measurements of polar organic marker compounds were performed on aerosols that were collected at a pasture site in the Amazon basin (Rondonia, Brazil) using a high-volume dichotomous sampler (HVDS) and a Micro-Orifice Uniform Deposit Impactor (MOUDI) within the framework of the 2002 LBA-SMOCC (Large-Scale Biosphere Atmosphere Experiment in Amazonia - Smoke Aerosols, Clouds, Rainfall, and Climate: Aerosols From Biomass Burning Perturb Global and Regional Climate) campaign. The campaign spanned the late dry season (biomass burning), a transition period, and the onset of the wet season (clean conditions). In the present study a more detailed discussion is presented compared to previous reports on the behavior of selected polar marker compounds, including levoglucosan, malic acid, isoprene secondary organic aerosol (SOA) tracers and tracers for fungal spores. The tracer data are discussed taking into account new insights that recently became available into their stability and/or aerosol formation processes. During all three periods, levoglucosan was the most dominant identified organic species in the PM(2.5) size fraction of the HVDS samples. In the dry period levoglucosan reached concentrations of up to 7.5 mu g m(-3) and exhibited diel variations with a nighttime prevalence. It was closely associated with the PM mass in the size-segregated samples and was mainly present in the fine mode, except during the wet period where it peaked in the coarse mode. Isoprene SOA tracers showed an average concentration of 250 ng m(-3) during the dry period versus 157 ng m(-3) during the transition period and 52 ng m(-3) during the wet period. Malic acid and the 2-methyltetrols exhibited a different size distribution pattern, which is consistent with different aerosol formation processes (i.e., gas-to-particle partitioning in the case of malic acid and heterogeneous formation from gas-phase precursors in the case of the 2-methyltetrols). The 2-methyltetrols were mainly associated with the fine mode during all periods, while malic acid was prevalent in the fine mode only during the dry and transition periods, and dominant in the coarse mode during the wet period. The sum of the fungal spore tracers arabitol, mannitol, and erythritol in the PM(2.5) fraction of the HVDS samples during the dry, transition, and wet periods was, on average, 54 ng m(-3), 34 ng m(-3), and 27 ng m(-3), respectively, and revealed minor day/night variation. The mass size distributions of arabitol and mannitol during all periods showed similar patterns and an association with the coarse mode, consistent with their primary origin. The results show that even under the heavy smoke conditions of the dry period a natural background with contributions from bioaerosols and isoprene SOA can be revealed. The enhancement in isoprene SOA in the dry season is mainly attributed to an increased acidity of the aerosols, increased NO(x) concentrations and a decreased wet deposition.
Resumo:
Aerosol samples were collected at a pasture site in the Amazon Basin as part of the project LBA-SMOCC-2002 (Large-Scale Biosphere-Atmosphere Experiment in Amazonia - Smoke Aerosols, Clouds, Rainfall and Climate: Aerosols from Biomass Burning Perturb Global and Regional Climate). Sampling was conducted during the late dry season, when the aerosol composition was dominated by biomass burning emissions, especially in the submicron fraction. A 13-stage Dekati low-pressure impactor (DLPI) was used to collect particles with nominal aerodynamic diameters (D(p)) ranging from 0.03 to 0.10 mu m. Gravimetric analyses of the DLPI substrates and filters were performed to obtain aerosol mass concentrations. The concentrations of total, apparent elemental, and organic carbon (TC, EC(a), and OC) were determined using thermal and thermal-optical analysis (TOA) methods. A light transmission method (LTM) was used to determine the concentration of equivalent black carbon (BC(e)) or the absorbing fraction at 880 nm for the size-resolved samples. During the dry period, due to the pervasive presence of fires in the region upwind of the sampling site, concentrations of fine aerosols (D(p) < 2.5 mu m: average 59.8 mu g m(-3)) were higher than coarse aerosols (D(p) > 2.5 mu m: 4.1 mu g m(-3)). Carbonaceous matter, estimated as the sum of the particulate organic matter (i.e., OC x 1.8) plus BC(e), comprised more than 90% to the total aerosol mass. Concentrations of EC(a) (estimated by thermal analysis with a correction for charring) and BC(e) (estimated by LTM) averaged 5.2 +/- 1.3 and 3.1 +/- 0.8 mu g m(-3), respectively. The determination of EC was improved by extracting water-soluble organic material from the samples, which reduced the average light absorption Angstrom exponent of particles in the size range of 0.1 to 1.0 mu m from >2.0 to approximately 1.2. The size-resolved BC(e) measured by the LTM showed a clear maximum between 0.4 and 0.6 mu m in diameter. The concentrations of OC and BC(e) varied diurnally during the dry period, and this variation is related to diurnal changes in boundary layer thickness and in fire frequency.