889 resultados para Hong Sangsoo


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Data analysis based on station observations reveals that many meteorological variables averaged over the Tibetan Plateau (TP) are closely correlated, and their trends during the past decades are well correlated with the rainfall trend of the Asian summer monsoon. However, such correlation does not necessarily imply causality. Further diagnosis confirms the existence of a weakening trend in TP thermal forcing, characterized by weakened surface sensible heat flux in spring and summer during the past decades. This weakening trend is associated with decreasing summer precipitation over northern South Asia and North China and increasing precipitation over northwestern China, South China, and Korea. An atmospheric general circulation model, the HadAM3, is employed to elucidate the causality between the weakening TP forcing and the change in the Asian summer monsoon rainfall. Results demonstrate that a weakening in surface sensible heating over the TP results in reduced summer precipitation in the plateau region and a reduction in the associated latent heat release in summer. These changes in turn result in the weakening of the near-surface cyclonic circulation surrounding the plateau and the subtropical anticyclone over the subtropical western North Pacific, similar to the results obtained from the idealized TP experiment in Part I of this study. The southerly that normally dominates East Asia, ranging from the South China Sea to North China, weakens, resulting in a weaker equilibrated Sverdrup balance between positive vorticity generation and latent heat release. Consequently, the convergence of water vapor transport is confined to South China, forming a unique anomaly pattern in monsoon rainfall, the so-called “south wet and north dry.” Because the weakening trend in TP thermal forcing is associated with global warming, the present results provide an effective means for assessing projections of regional climate over Asia in the context of global warming.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many modern cities locate in the mountainous areas, like Hong Kong, Phoenix City and Los Angles. It is confirmed in the literature that the mountain wind system developed by differential heating or cooling can be very beneficial in ventilating the city nearby and alleviating the UHI effect. However, the direct interaction of mountain wind with the natural-convection circulation due to heated urban surfaces has not been studied, to our best knowledge. This kind of unique interaction of two kinds of airflow structures under calm and neutral atmospheric environment is investigated in this paper by CFD approach. A physical model comprising a simple mountain and three long building blocks (forming two street canyons) is firstly developed. Different airflow structures are identified within the conditions of different mountain-building height ratios (R=Hm/Hb) by varying building height but fixing mountain height. It is found that the higher ventilation rate in the street canyons is expected in the cases of smaller mountain-building ratios, indicating the stronger natural convection due to increasing heated building surfaces. However, there is the highest air change rate (ACH) in the lowest-building-height case and most of the air is advective into the street canyon through the top open area, highlighting the important role played by the mountain wind. In terms of the ventilation efficiency, it is shown that the smallest R case enjoys the best air change efficiency followed by the highest R case, while the worst ventilative street canyons occur at the middle R case. In the end, a gap across the streets is introduced in the modeling. The existence of the gap can greatly channel the mountain wind and distribute the air into streets nearby. Thus the ACH can be doubled and air quality can be significantly improved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of the surrounding lower buildings on the wind pressure distribution on a high-rise building is investigated by computational fluid dynamics (CFD). When B/H=0.1, it is found that the wind pressure on the windward side was reduced especially on the lower part, but for different layers of surrounding buildings, there was no great difference, which agrees with our previous wind tunnel experiment data. Then we changed the aspect ratio from 0.1 to 2, to represent different airflow regimes: skimming flow (SF), and wake interference (WI). It shows that the average Cp increases when B/H increases. For different air flow regimes, it is found that insignificant difference exists when the number of the building layers is more than 2. From the engineering point of view, it is sufficient to only include the first layer for natural ventilation design by using CFD simulation or wind tunnel experiment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper provides a comparative study of the performance of cross-flow and counter-flow M-cycle heat exchangers for dew point cooling. It is recognised that evaporative cooling systems offer a low energy alternative to conventional air conditioning units. Recently emerged dew point cooling, as the renovated evaporative cooling configuration, is claimed to have much higher cooling output over the conventional evaporative modes owing to use of the M-cycle heat exchangers. Cross-flow and counter-flow heat exchangers, as the available structures for M-cycle dew point cooling processing, were theoretically and experimentally investigated to identify the difference in cooling effectiveness of both under the parallel structural/operational conditions, optimise the geometrical sizes of the exchangers and suggest their favourite operational conditions. Through development of a dedicated computer model and case-by-case experimental testing and validation, a parametric study of the cooling performance of the counter-flow and cross-flow heat exchangers was carried out. The results showed the counter-flow exchanger offered greater (around 20% higher) cooling capacity, as well as greater (15%–23% higher) dew-point and wet-bulb effectiveness when equal in physical size and under the same operating conditions. The cross-flow system, however, had a greater (10% higher) Energy Efficiency (COP). As the increased cooling effectiveness will lead to reduced air volume flow rate, smaller system size and lower cost, whilst the size and cost are the inherent barriers for use of dew point cooling as the alternation of the conventional cooling systems, the counter-flow system is considered to offer practical advantages over the cross-flow system that would aid the uptake of this low energy cooling alternative. In line with increased global demand for energy in cooling of building, largely by economic booming of emerging developing nations and recognised global warming, the research results will be of significant importance in terms of promoting deployment of the low energy dew point cooling system, helping reduction of energy use in cooling of buildings and cut of the associated carbon emission.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A neurofuzzy classifier identification algorithm is introduced for two class problems. The initial fuzzy base construction is based on fuzzy clustering utilizing a Gaussian mixture model (GMM) and the analysis of covariance (ANOVA) decomposition. The expectation maximization (EM) algorithm is applied to determine the parameters of the fuzzy membership functions. Then neurofuzzy model is identified via the supervised subspace orthogonal least square (OLS) algorithm. Finally a logistic regression model is applied to produce the class probability. The effectiveness of the proposed neurofuzzy classifier has been demonstrated using a real data set.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes a novel adaptive noise cancellation system with fast tunable radial basis function (RBF). The weight coefficients of the RBF network are adapted by the multi-innovation recursive least square (MRLS) algorithm. If the RBF network performs poorly despite of the weight adaptation, an insignificant node with little contribution to the overall performance is replaced with a new node without changing the model size. Otherwise, the RBF network structure remains unchanged and only the weight vector is adapted. The simulation results show that the proposed approach can well cancel the noise in both stationary and nonstationary ANC systems.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we propose a novel online modeling algorithm for nonlinear and nonstationary systems using a radial basis function (RBF) neural network with a fixed number of hidden nodes. Each of the RBF basis functions has a tunable center vector and an adjustable diagonal covariance matrix. A multi-innovation recursive least square (MRLS) algorithm is applied to update the weights of RBF online, while the modeling performance is monitored. When the modeling residual of the RBF network becomes large in spite of the weight adaptation, a node identified as insignificant is replaced with a new node, for which the tunable center vector and diagonal covariance matrix are optimized using the quantum particle swarm optimization (QPSO) algorithm. The major contribution is to combine the MRLS weight adaptation and QPSO node structure optimization in an innovative way so that it can track well the local characteristic in the nonstationary system with a very sparse model. Simulation results show that the proposed algorithm has significantly better performance than existing approaches.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This contribution introduces a new digital predistorter to compensate serious distortions caused by memory high power amplifiers (HPAs) which exhibit output saturation characteristics. The proposed design is based on direct learning using a data-driven B-spline Wiener system modeling approach. The nonlinear HPA with memory is first identified based on the B-spline neural network model using the Gauss-Newton algorithm, which incorporates the efficient De Boor algorithm with both B-spline curve and first derivative recursions. The estimated Wiener HPA model is then used to design the Hammerstein predistorter. In particular, the inverse of the amplitude distortion of the HPA's static nonlinearity can be calculated effectively using the Newton-Raphson formula based on the inverse of De Boor algorithm. A major advantage of this approach is that both the Wiener HPA identification and the Hammerstein predistorter inverse can be achieved very efficiently and accurately. Simulation results obtained are presented to demonstrate the effectiveness of this novel digital predistorter design.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Analysis of human behaviour through visual information has been a highly active research topic in the computer vision community. This was previously achieved via images from a conventional camera, but recently depth sensors have made a new type of data available. This survey starts by explaining the advantages of depth imagery, then describes the new sensors that are available to obtain it. In particular, the Microsoft Kinect has made high-resolution real-time depth cheaply available. The main published research on the use of depth imagery for analysing human activity is reviewed. Much of the existing work focuses on body part detection and pose estimation. A growing research area addresses the recognition of human actions. The publicly available datasets that include depth imagery are listed, as are the software libraries that can acquire it from a sensor. This survey concludes by summarising the current state of work on this topic, and pointing out promising future research directions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A two-stage linear-in-the-parameter model construction algorithm is proposed aimed at noisy two-class classification problems. The purpose of the first stage is to produce a prefiltered signal that is used as the desired output for the second stage which constructs a sparse linear-in-the-parameter classifier. The prefiltering stage is a two-level process aimed at maximizing a model's generalization capability, in which a new elastic-net model identification algorithm using singular value decomposition is employed at the lower level, and then, two regularization parameters are optimized using a particle-swarm-optimization algorithm at the upper level by minimizing the leave-one-out (LOO) misclassification rate. It is shown that the LOO misclassification rate based on the resultant prefiltered signal can be analytically computed without splitting the data set, and the associated computational cost is minimal due to orthogonality. The second stage of sparse classifier construction is based on orthogonal forward regression with the D-optimality algorithm. Extensive simulations of this approach for noisy data sets illustrate the competitiveness of this approach to classification of noisy data problems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents an image motion model for airborne three-line-array (TLA) push-broom cameras. Both aircraft velocity and attitude instability are taken into account in modeling image motion. Effects of aircraft pitch, roll, and yaw on image motion are analyzed based on geometric relations in designated coordinate systems. The image motion is mathematically modeled by image motion velocity multiplied by exposure time. Quantitative analysis to image motion velocity is then conducted in simulation experiments. The results have shown that image motion caused by aircraft velocity is space invariant while image motion caused by aircraft attitude instability is more complicated. Pitch,roll and yaw all contribute to image motion to different extents. Pitch dominates the along-track image motion and both roll and yaw greatly contribute to the cross-track image motion. These results provide a valuable base for image motion compensation to ensure high accuracy imagery in aerial photogrammetry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Airborne lidar provides accurate height information of objects on the earth and has been recognized as a reliable and accurate surveying tool in many applications. In particular, lidar data offer vital and significant features for urban land-cover classification, which is an important task in urban land-use studies. In this article, we present an effective approach in which lidar data fused with its co-registered images (i.e. aerial colour images containing red, green and blue (RGB) bands and near-infrared (NIR) images) and other derived features are used effectively for accurate urban land-cover classification. The proposed approach begins with an initial classification performed by the Dempster–Shafer theory of evidence with a specifically designed basic probability assignment function. It outputs two results, i.e. the initial classification and pseudo-training samples, which are selected automatically according to the combined probability masses. Second, a support vector machine (SVM)-based probability estimator is adopted to compute the class conditional probability (CCP) for each pixel from the pseudo-training samples. Finally, a Markov random field (MRF) model is established to combine spatial contextual information into the classification. In this stage, the initial classification result and the CCP are exploited. An efficient belief propagation (EBP) algorithm is developed to search for the global minimum-energy solution for the maximum a posteriori (MAP)-MRF framework in which three techniques are developed to speed up the standard belief propagation (BP) algorithm. Lidar and its co-registered data acquired by Toposys Falcon II are used in performance tests. The experimental results prove that fusing the height data and optical images is particularly suited for urban land-cover classification. There is no training sample needed in the proposed approach, and the computational cost is relatively low. An average classification accuracy of 93.63% is achieved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This letter presents an effective approach for selection of appropriate terrain modeling methods in forming a digital elevation model (DEM). This approach achieves a balance between modeling accuracy and modeling speed. A terrain complexity index is defined to represent a terrain's complexity. A support vector machine (SVM) classifies terrain surfaces into either complex or moderate based on this index associated with the terrain elevation range. The classification result recommends a terrain modeling method for a given data set in accordance with its required modeling accuracy. Sample terrain data from the lunar surface are used in constructing an experimental data set. The results have shown that the terrain complexity index properly reflects the terrain complexity, and the SVM classifier derived from both the terrain complexity index and the terrain elevation range is more effective and generic than that designed from either the terrain complexity index or the terrain elevation range only. The statistical results have shown that the average classification accuracy of SVMs is about 84.3% ± 0.9% for terrain types (complex or moderate). For various ratios of complex and moderate terrain types in a selected data set, the DEM modeling speed increases up to 19.5% with given DEM accuracy.