993 resultados para Hillslope sediments
Resumo:
Two radiolarian assemblages are distinguished: an equatorial sub-assemblage of the tropical assemblage in the East Pacific Ocean, which differs somewhat from association of radiolarians in the western part of the ocean, and an assemblage close to transitional one between the tropical and the boreal. The latter is characterized by presence of considerable number of species typical for cold-water regions. Some criteria are presented for distinguishing radiolarian associations in nearshore regions from similar associations in regions of the open ocean.
Resumo:
Chert and associated host sediments from Monterey Formation and Deep Sea Drilling Project (DSDP) sequences were analyzed in order to assess chemical behavior during diagenesis of biogenic sediments. The primary compositional contrast between chert and host sediment is a greater absolute SiO2 concentration in chert, often with final SiO2 >=98 wt%. This contrast in SiO2 (and Si/Al) potentially reflects precursor sediment heterogeneity, diagenetic chemical fractionation, or both. SiO2 concentrations and Si/Al ratios in chert are far greater than in modern siliceous oozes, however and often exceed values in acid-cleaned diatom tests. Compositional contrasts between chert and host sediment are also orders-of-magnitude greater than between multiple samples of the host sediment. Calculations based on the initial composition of adjacent host, observed porosity reductions from host to chert and a postulated influx of pure SiO2, construct a chert composition which is essentially identical to observed SiO2 values in chert. Thus, precursor heterogeneity does not seem to be the dominant factor influencing the current chert composition for the key elements of interest. In order to assess the extent of chemical fractionation during diagenesis, we approximate the precursor composition by analyzing host sediments adjacent to the chert. The SiO2 concentration contrast seems caused by biogenic SiO2 dissolution and transport from the local adjacent host sediment and subsequent SiO2 reprecipitation in the chert. Along with SiO2, other elements are often added (with respect to Al) to Monterey and DSDP chert during silicification, although absolute concentrations decrease. The two Monterey quartz chert nodules investigated, in contrast to the opal-CT and quartz chert lenses, formed primarily by extreme removal of carbonate and phosphate, thereby increasing relative SiO2 concentrations. DSDP chert formed by both carbonate/phosphate dissolution and SiO2 addition from the host. Manganese is fractionated during chert formation, resulting in MnO/Al2O3 ratios that no longer record the depositional signal of the precursor sediment. REE data indicate only subtle diagenetic fractionation across the rare earth series. Ce/Ce* values do not change significantly during diagenesis of either Monterey or DSDP chert. Eu/Eu* decreases slightly during formation of DSDP chert. Normative La/Yb is affected only minimally as well. During formation of one Monterey opal-CT chert lens, REE/Al ratios show subtle distribution changes at Gd and to a lesser extent near Nd and Ho. REE compositional contrasts between diagenetic states of siliceous sediment and chert are of a vastly smaller scale than has been noted between different depositional environments of marine sediment, indicating that the paleoenvironmental REE signature is not obscured by diagenetic overprinting.
Resumo:
High resolution pore-water dissolved Ba concentration-depth profiles were determined at seven sites across an Equatorial Pacific productivity gradient from 12°S to 9°N, at 140°W. These data are important for understanding the physical, chemical, and biological controls on Ba recycling in the ocean, and for evaluating the paleo-oceanographic significance of Ba content in central Equatorial Pacific sediments. Pore-water Ba concentrations at all sites are higher than in the overlying bottom water, leading to a diffusive flux of Ba into the ocean. A pronounced subsurface concentration maximum exceeding barite solubility characterizes the dissolved Ba pore-water profiles, suggesting that the Ba regenerated in the upper few millimeters of sediment is not controlled by barite solubility. A few centimeters down-core Ba concentrations reach a relatively constant value of approximately barite saturation. The benthic Ba flux shows a clear zonal trend, with a maximum between 2°S and 2°N, most probably due to higher productivity at the equatorial divergence zone, and with lowest values at the southern and northern extremes of the transect. The dissolved Ba flux between 2°S and 2°N is ~30 nmol/cm**2 yr and drops to 6 nmol/cm**2 yr at 12°S. Even the lowest fluxes are significantly higher than those previously reported for the open ocean. In the Equatorial Pacific the calculated Ba recycling efficiency is about 70%. Thus, ~30% of the particulate Ba flux to the deep ocean is preserved in the sediments, compared with less than 1% for organic carbon and ~5% for biogenic silica. Mass balance calculation of the oceanic Ba cycle, using a two-box model, implies benthic Ba fluxes similar to those reported here for a steady-state ocean.
Resumo:
A relatively extended Oligocene pelagic sequence with good to medium recovery, drilled during DSDP Leg 77 in the Gulf of Mexico, yielded rich and well diversified planktonic foraminiferal faunas. Planktonic foraminifera recorded in Hole 538A span the interval from Zone P19 through P22. Evolutionary lineages were observed among the globoquadrinids, the globigerinitids, and the "Globigerina" ciperoensis and Globigerinoides primordius groups. Quantitative analysis of planktonic foraminiferal assemblages shows that faunas fluctuate in abundance and species diversity throughout the sequence. A few of these fluctuations that could be related to selective dissolution are mainly confined to the early-mid Oligocene. A climatic curve was constructed using as warmer indicators, Turborotalia pseudoampliapertura, Globoquadrina tripartita, Dentoglobigerina globularis, Dentoglobigerina baroemoenensis,. "Globigerina" ciperoensis and Globigerinoides groups, and Cassigerinella chipolensis; and as coller indicators, Catapsydrax spp., Globorotaloides spp., Subbotina angiporoides group, Globigerina s. str., and the tenuitellides. Three major intervals are identifiable in the climatic curve: Interval 1 (lower) up to Zone P20 predominantly cooler: Interval 2 (intermediate) up to the upper part of Zone P21a with warm and cool fluctuations: and lnterval 3 (upper), warmer, with a large positive peak, due to abundant "G." angulisuturalis, at the beginning of Zone P21b with recooling midway in Zone P22. In Intervals 1 and 2 planktonic foraminiferal faunas are dominated by temperate forms. Interpretation of planktonic foraminiferal data suggests that cooler water conditions characterize the early-mid Oligocene: during the mid Oligocene (most of Zone P21a) water masses exhibit peculiar characteristics transitional to the warmer waters prevailing during the late Oligocene. Warmer conditions were not definitely settled in Zone P22, however, as indicated by the cooler episode following the warmest peak. These climatic trends are inconsistent with those inferred from oxygen isotopes except at small scale. In fact, oxygen isotope values for Oligocene Atlantic Ocean are too heavy (thus too cool) in comparison with the high abundance and diversity of warm taxa, expecially in Zone P22. When values are lighter (warmer), as in Zone P19 abundance and diversity of warm indices are too low. To explain such a cool isotope values in presence of highly diversified and abundant warm planktonic foraminifera, we suggest (1) that the oxygen isotope ratio used for estimating Oligocene paleotemperatures might be 1? heavier than Eocene values and further increased for the late Oligocene. This hypothesis implies the presence of a relatively extended ice cap in Antarctica in the early and mid Oligocene, and probably an increase in ice volume during the late Oligocenc: (2) heavier isotope values might be related to an increase in salinity, or (3) by a combination of both ice cap and increase in salinity.
Resumo:
We have studied the sedimentary and basaltic inputs of lithium to subduction zones. Various sediments from DSDP and ODP drill cores in front of the Mariana, South Sandwich, Banda, East Sunda and Lesser Antilles island arcs have been analysed and show highly variable Li contents and d7Li values. The sediment piles in front of the Mariana and South Sandwich arcs largely consist of pelagic sediments (clays and oozes). The pelagic clays have high Li contents (up to 57.3 ppm) and Li isotope compositions ranging from +1.3? to +4.1?. The oozes have lower Li contents (7.3-16 ppm) with d7Li values of the diatom oozes from the South Sandwich lower (+2.8? to +3.2?) than those of the radiolarian oozes from the Mariana arc (+8.1? to +14.5?). Mariana sediment also contains a significant portion of volcanogenic material, which is characterised by a moderate Li content (14 ppm) and a relatively heavy isotope composition (+6.4?). Sediments from the Banda and Lesser Antilles contain considerable amounts of continental detritus, and have high Li contents (up to 74.3 ppm) and low d7Li values (around 0?), caused by weathering of continental bedrock. East Sunda sediments largely consist of calcareous oozes. These carbonate sediments display intermediate to high Li contents (2.4-41.9 ppm) and highly variable d7Li values (-1.6? to +12.8?). Basaltic oceanic crust samples from worldwide DSDP and ODP drill cores are characterised by enrichment of Li compared to fresh MORB (6.6-33.1 vs. 3.6-7.5 ppm, respectively), and show a large range in Li isotope compositions (+1.7? to +11.8?). The elemental and isotopic enrichment of Li in altered basalts is due to the uptake of isotopically heavy seawater Li during weathering. However, old oceanic crust samples from Sites 417/418 exhibit lighter Li isotope compositions compared to young basaltic crust samples from Sites 332B and 504B. This lighter Li isotope signature in old crust is unexpected and further research is needed to explore this issue.
Resumo:
This report synthesizes all of the interstitial-water chemistry studies associated with the Kerguelen Plateau phase of ODP Leg 119. Sediments were cored at six sites (49°24'S to 59°36'S) in water depths ranging from 564 to 4082 m. A total of 77 interstitial-water samples was recovered as part of the routine sampling protocol. In addition, a novel, highresolution pore-water sampling program was tested during Leg 119 that enabled us to pinpoint reaction zones and extend our data base to deeper, drier levels that were heretofore inaccessible. Data collected include interstitial-water sodium, potassium, calcium, magnesium, pH, alkalinity, sulfate, ammonia, phosphate, aqueous silica, salinity, chloride, oxidation-reduction potentials, and sediment chemistry. The northern sector (Sites 736 and 737) is characterized by the highest sedimentation rates (up to 140 m/m.y.) and thermal gradients (70°-98°C/km) encountered on the Kerguelen Plateau during Leg 119. Site 737 represents the most reactive sediment column cored on the Kerguelen Plateau. Major cation fluxes at Site 737 are the strongest measured during Leg 119. High dissolved calcium concentrations (141.5 mM) were encountered near the bottom of Hole 737B. Elevated temperatures promote silica diagenesis and the alteration of volcanic material below 300 mbsf, and a diagenetic front was discovered near 370 mbsf at Site 737. The southern portion of the Kerguelen Plateau (Sites 738 and 744) records the lowest sedimentation rates (less than 5 m/m.y.) and thermal gradients (43°C/km) of the three study areas. Major cation fluxes at the southern sites are the lowest that we measured on the Kerguelen Plateau. High-resolution sampling provided evidence for significant silica release to the pore waters during the weathering of basement basalt. The relatively low thermal gradient does not appear to be sufficient for the formation of the opal-CT and quartz chert beds and nodules that were encountered below 120 mbsf at Site 738. Sediment-accumulation rates on the Eastern Kerguelen Sediment Ridge (Sites 745 and 746) are intermediate to those of the northern and southern sites. Deposition below the regional CCD accounts for the nearly carbonate-free, siliceous sediments. Despite their low organic carbon contents (mean = 0.15%), sediments on the Eastern Kerguelen Sediment Ridge exhibit the highest pore-water alkalinity (6.77 mM), ammonium (0.50 mM), and phosphate (23 µM) concentrations measured on the Kerguelen Plateau. Major cation fluxes are intermediate to those calculated for the northern and southern sites. The Eastern Kerguelen Sediment Ridge interstitial waters are unusual, however, in that the downward flux of magnesium is greater than the upward flux of calcium.
Resumo:
At Ocean Drilling Program (ODP) Leg 189 Sites 1170-1172, the climatologically critical Eocene-Oligocene (E-O) transition is barren of any calcareous microfossils but contains rich marine organic walled dinoflagellate cyst (dinocyst) and diatom assemblages, suitable for detailed biostratigraphic and paleoenvironmental analysis. The resulting first-ever integrated dinocyst/diatom magnetostratigraphy allows confident correlation of the E-O interval between all Leg 189 sites, including Site 1168. Our correlations indicate that the (deep) opening of the Tasmanian Gateway occurred quasi-synchronously throughout the Tasmanian region, starting at ~35.5 Ma. At Sites 1170-1172, quantitatively, three distinct dinocyst assemblages may be distinguished that reflect the relatively rapid and pronounced stepwise environmental changes associated with the E-O transition in the Tasmanian region, from a pro-deltaic setting to a deep marine pelagic setting. Moreover, synchronous with the deepening of the gateway, at the southern and eastern Sites 1170-1172, typical endemic Antarctic assemblages were replaced by more cosmopolitan dinocyst communities. In marked contrast, at Site 1168 off western Tasmania, endemic Antarctic taxa are virtually absent during the E-O transition. At Sites 1170-1172, the endemic Antarctic dinocyst assemblage (Transantarctic Flora) drastically changes into a more cosmopolitan assemblage at ~35.5 Ma, with a more offshore character, reflecting the arrival of different oceanographic and environmental conditions associated with the deepening of the Tasmanian Gateway. In turn, this assemblage grades at ~34 Ma into one more typical for even more offshore and/or upwelling conditions at Site 1172. In slightly younger deposits at all sites, organic microfossils are virtually absent, reflecting winnowing and oxidation, indicative of a next step of oceanographic development. This phase may be dated as close to the Oceanic Anoxic (Oi)-1 18O (Antarctic glaciation) event (~33.3 Ma). In a single productive sample from the earliest Oligocene the northern Site 1172, a relatively warm-water cosmopolitan assemblage has been recovered. This aspect contrasts findings from coeval deposits from the Ross Sea, where endemic Antarctic species remain dominant. Somewhere between the paleogeographic positions of Site 1172 and the Ross Sea, a strong differentiation of surface waters occurred in the earliest Oligocene, possibly reflecting the onset of the Antarctic Circumpolar Current.
Resumo:
The organic matter contained within a series of Albian to Cenomanian, dark gray to black marls was characterized using pyrolysis techniques and analysis (elemental and carbon isotopes) of isolated kerogens. It was concluded that this material had a marine affinity. Variations in geochemical characteristics reflect differences in the extent of preservation, rather than changes in organic provenance. These changes appear to reflect differences in water depth and the position of the depositional site relative to the oxygen-minimum zone. Sediments displaying the most elevated levels of organiccarbon and hydrogen enrichment probably reflect sedimentation within the oxygen-minimum zone. Waters within the oxygen-minimum zone were probably dysaerobic, rather than anoxic. The presence of at least trace quantities of oxygen at the depositional site explains the poor degree of organic preservation and the material's largely gas-prone characteristics.
Resumo:
The Br/Cl, Li/Cl and B/Cl ratios and boron isotope compositions of hypersaline pore fluids from DSDP Sites 372 and 374 were measured in an attempt to evaluate the origin of the brines. In Site 374 the relationships between the Cl concentrations (up to 5000 mM) and Br/Cl (~0.012), Na/Cl (as low as 0.1), B/Cl (0.0025), and d11B values (43-55?) of the deep pore water between 380 and 405 mbsf, located within the Messinian sediments, reflect remnants of ~65-fold evaporated sea water. The original evaporated sea water was modified by: (1) dilution with overlying or less saline water by about 30%; and (2) slight dissolution of NaCl evaporites. The variations in d11B show a continuous increase in d11B values with depth in Site 374, up to 66.7? at a depth of 300 mbsf (Upper Pliocene marl sediments). The conspicuous 11B enrichment trend is consistent with elemental boron depletion, which was calculated from the expected boron concentrations of evaporated sea water with corresponding Br/Cl and Na/Cl ratios. Li/Cl variations also show a depletion of Li relative to evaporated sea water. The apparent depletions of B and Li, as well as the 11B enrichment, reflect uptake of these elements by clay minerals at low water/sediment ratios.
Resumo:
Basal carbonate sediments recovered at Ocean Drilling Program (ODP) Site 1149 lie directly on magnetic Anomaly M12. They contain abundant and moderately well preserved calcareous nannofossils. Two nannofossil zones are recognized: the lower Calcicalathina oblongata Zone and the upper Lithraphidites bollii Zone, indicating a late Valanginian-late Hauterivian age. The close occurrence of two significant bioevents, the first occurrence (FO) of L. bollii and the FO of Rucinolithus terebrodentarius in Core 185-1149B-20R, together with dip data recorded during in situ geophysical logging, suggest the presence of an unconformity that corresponds to the lower Hauterivian sedimentary section. The continuous occurrence of L. bollii is reported for the first time in sediments from the Pacific Ocean. Other marker species regarded as cosmopolitan (e.g., C. oblongata) have a sporadic occurrence. Nannoconids, very useful zonal markers for Tethyan areas, are virtually absent. The presence of an unusually high abundance of Diazomatolithus lehmanii is also recorded and correlates with the Valanginian 13C positive excursion.
Resumo:
Bioaccumulation of metals by zoobenthos was investigated during cruise 11A of R/V Akademik Mstislav Keldysh in the vicinity of a gas-hydrate seep off Paramushir Island in the Sea of Okhotsk. Atomic absorption studies of concentrations of Al, Fe, Mn, Ni, Cu and Zn in zoobenthos (polychaetes, bivalves, ophiurans and echinoderms) collected from depths of 700-800 m indicated that their concentrations in individuals near the seep were not significantly different from those in individuals from other communities. Obtained results indicate that sea urchins and holothurians (non-sorting bottom-feeders) can separate mineral fraction of ingested bottom material.
Resumo:
The deep Black Sea is known to be depleted in electron-acceptors for sulphide oxidation. This study on depth distributions of sulphur species (S(II), S(0),S(n)**2-,S2O3**2-,SO3**2-,SO4**2-) in the Dvurechenskii mud volcano, a cold seep situated in the permanently anoxic eastern Black Sea basin (Sorokin Trough, 2060 m water depth), showed remarkable concentrations of sulphide oxidation products. Sulphite concentrations of up to 11 µmol L**1-, thiosulphate concentrations of up to 22 µmol L**1-, zero-valent sulphur concentrations of up to 150 µmol L**1- and up to five polysulphide species were measured in the upper 20 cm of the sediment. Electron-acceptors found to be available in the Dvurechenskii mud volcano (DMV) for the oxidation of hydrogen sulphide to sulphide oxidation intermediates are iron-minerals, and probably also reactive manganese phases. Up to 60 µmol g**1- of reactive iron-minerals and up to 170 µmol L**1- dissolved iron was present in the central summit with the highest fluid upflow and fresh mud outflow. Thus, the source for the oxidative power in the DMV are reactive iron phases extruded with the mud from an ancient source in the deeply buried sediments, leading to the formation of various sulphur intermediates in comparably high concentrations. Another possible source of sulphide oxidation intermediates in DMV sediments could be the formation of zero-valent sulphur by sulphate dependent anaerobic microbial oxidation of methane followed by disproportionation of zero-valent sulphur. Sulphide oxidation intermediates, which are produced by these processes, do not reach thermodynamic equilibrium with rhombic sulphur, especially close to the active center of the DMV due to a short equilibration time. Thus, mud volcano sediments, such as in the DMV, can provide oxidizing niches even in a highly reduced environment like the abyssal part of the Black Sea.