963 resultados para HOMOGENEOUS CATALYTIC REACTIONS
Resumo:
It is known that all the vector bundles of the title can be obtained by holomorphic induction from representations of a certain parabolic group on finite-dimensional inner product spaces. The representations, and the induced bundles, have composition series with irreducible factors. We write down an equivariant constant coefficient differential operator that intertwines the bundle with the direct sum of its irreducible factors. As an application, we show that in the case of the closed unit ball in C-n all homogeneous n-tuples of Cowen-Douglas operators are similar to direct sums of certain basic n-tuples. (c) 2015 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.
Resumo:
Vertically aligned carbon nanotubes were synthesized by plasma enhanced chemical vapor deposition using nickel as a metal catalyst. High resolution transmission electron microscopy analysis of the particle found at the tip of the tubes reveals the presence of a metastable carbide Ni3C. Since the carbide is found to decompose upon annealing at 600 degreesC, we suggest that Ni3C is formed after the growth is stopped due to the rapid cooling of the Ni-C interstitial solid solution. A detailed description of the tip growth mechanism is given, that accounts for the composite structure of the tube walls. The shape and size of the catalytic particle determine the concentration gradient that drives the diffusion of C atoms across and though the metal. (C) 2004 American Institute of Physics.
Resumo:
Hydrogen rearrangements at the H*2 complex are used as a model of low energy, local transitions in the two-hydrogen density of states of hydrogenated amorphous silicon (a-Si:H). These are used to account for the low activation energy motion of H observed by nuclear magnetic resonance, the low energy defect annealing of defects formed by bias stress in thin film transistors, and the elimination of hydrogen from the growth zone during the low temperature plasma deposition of a-Si:H. © 1998 Elsevier Science B.V. All rights reserved.
Resumo:
Self-ignition tests of a model scramjet combustor were conducted by using parallel sonic injection of gaseous hydrogen from the base of a blade-like strut into a supersonic vitiated airstream. The range of stagnation pressure and temperature studied varied from 1.0 to 4.5 MPa and from 1300 to 2200 K, respectively. Experimental results show that the self-ignition limit, in terms of either global or local quantities of pressure and temperature, exhibits a nonmonotonic behavior resembling the classical homogeneous explosion limit of the hydrogen-oxygen system. Specifically, for a given temperature, increasing pressure from a low value can render a nonignitable mixture to first become ignitable, then nonignitable again, This correspondence shows that, despite the globally supersonic nonpremixed configuration studied herein, ignition is strongly influenced by the intricate chemical reaction mechanism and thereby exhibits the homogeneous explosion character. Consequently, self-ignition criteria based on a global reaction rate approximating the complex chemistry are inadequate. An auxiliary computational study on counterflow ignition was also conducted to systematically investigate the contamination effects of vitiated air. Results indicate that the net contamination effects for the present experimental data are expected to be substantially smaller than contributions from the individual contamination species because of the counterbalancing influences of the H2O-inhibition and NO-promotion reactions in effecting ignition.
Resumo:
Supercritical fluids (SCFs) offer a wide range of opportunities as media for chemical reactions and supercritical CO2, ScCO2, is becoming increasingly important as a benign replacement for more toxic solvents.1 High pressure reactions, however, are more capital intensive than conventional low pressure processes. Therefore, supercritical fluids will only gain widespread acceptance in those areas where the fluids give real chemical advantages as well as environmental benefits. This lecture gives a brief account of the use of flow reactors for continuous reactions in supercritical fluids, particularly those of interest for the manufacture of fine chemicals.
Resumo:
A semi-gas kinetics (SGK) model for performance analyses of flowing chemical oxygen-iodine laser (COIL) is presented. In this model, the oxygen-iodine reaction gas flow is treated as a continuous medium, and the effect of thermal motions of particles of different laser energy levels on the performances of the COIL is included and the velocity distribution function equations are solved by using the double-parameter perturbational method. For a premixed flow, effects of different chemical reaction systems, different gain saturation models and temperature, pressure, yield of excited oxygen, iodine concentration and frequency-shift on the performances of the COIL are computed, and the calculated output power agrees well with the experimental data. The results indicate that the power extraction of the SGK model considering 21 reactions is close to those when only the reversible pumping reaction is considered, while different gain saturation models and adjustable parameters greatly affect the output power, the optimal threshold gain range, and the length of power extraction.