839 resultados para HLA-E


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ability to define and manipulate the interaction of peptides with MHC molecules has immense immunological utility, with applications in epitope identification, vaccine design, and immunomodulation. However, the methods currently available for prediction of peptide-MHC binding are far from ideal. We recently described the application of a bioinformatic prediction method based on quantitative structure-affinity relationship methods to peptide-MHC binding. In this study we demonstrate the predictivity and utility of this approach. We determined the binding affinities of a set of 90 nonamer peptides for the MHC class I allele HLA-A*0201 using an in-house, FACS-based, MHC stabilization assay, and from these data we derived an additive quantitative structure-affinity relationship model for peptide interaction with the HLA-A*0201 molecule. Using this model we then designed a series of high affinity HLA-A2-binding peptides. Experimental analysis revealed that all these peptides showed high binding affinities to the HLA-A*0201 molecule, significantly higher than the highest previously recorded. In addition, by the use of systematic substitution at principal anchor positions 2 and 9, we showed that high binding peptides are tolerant to a wide range of nonpreferred amino acids. Our results support a model in which the affinity of peptide binding to MHC is determined by the interactions of amino acids at multiple positions with the MHC molecule and may be enhanced by enthalpic cooperativity between these component interactions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Classification of MHC molecules into supertypes in terms of peptide-binding specificities is an important issue, with direct implications for the development of epitope-based vaccines with wide population coverage. In view of extremely high MHC polymorphism (948 class I and 633 class II HLA alleles) the experimental solution of this task is presently impossible. In this study, we describe a bioinformatics strategy for classifying MHC molecules into supertypes using information drawn solely from three-dimensional protein structure. Two chemometric techniques–hierarchical clustering and principal component analysis–were used independently on a set of 783 HLA class I molecules to identify supertypes based on structural similarities and molecular interaction fields calculated for the peptide binding site. Eight supertypes were defined: A2, A3, A24, B7, B27, B44, C1, and C4. The two techniques gave 77% consensus, i.e., 605 HLA class I alleles were classified in the same supertype by both methods. The proposed strategy allowed “supertype fingerprints” to be identified. Thus, the A2 supertype fingerprint is Tyr9/Phe9, Arg97, and His114 or Tyr116; the A3-Tyr9/Phe9/Ser9, Ile97/Met97 and Glu114 or Asp116; the A24-Ser9 and Met97; the B7-Asn63 and Leu81; the B27-Glu63 and Leu81; for B44-Ala81; the C1-Ser77; and the C4-Asn77. action fields calculated for the peptide binding site. Eight supertypes were defined: A2, A3, A24, B7, B27, B44, C1, and C4. The two techniques gave 77% consensus, i.e., 605 HLA class I alleles were classified in the same supertype by both methods. The proposed strategy allowed “supertype fingerprints” to be identified. Thus, the A2 supertype fingerprint is Tyr9/Phe9, Arg97, and His114 or Tyr116; the A3-Tyr9/Phe9/Ser9, Ile97/Met97 and Glu114 or Asp116; the A24-Ser9 and Met97; the B7-Asn63 and Leu81; the B27-Glu63 and Leu81; for B44-Ala81; the C1-Ser77; and the C4-Asn77.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

With its implications for vaccine discovery, the accurate prediction of T cell epitopes is one of the key aspirations of computational vaccinology. We have developed a robust multivariate statistical method, based on partial least squares, for the quantitative prediction of peptide binding to major histocompatibility complexes (MHC), the principal checkpoint on the antigen presentation pathway. As a service to the immunobiology community, we have made a Perl implementation of the method available via a World Wide Web server. We call this server MHCPred. Access to the server is freely available from the URL: http://www.jenner.ac.uk/MHCPred. We have exemplified our method with a model for peptides binding to the common human MHC molecule HLA-B*3501.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Virus-specific CD8+ T cells are known to play an important role in the control of HIV infection. In this study we investigated whether there may be qualitative differences in the CD8+ T cell response in HIV-1- and HIV-2-infected individuals that contribute to the relatively efficient control of the latter infection. A molecular comparison of global TCR heterogeneity showed a more oligoclonal pattern of CD8 cells in HIV-1- than HIV-2-infected patients. This was reflected in restricted and conserved TCR usage by CD8+ T cells recognizing individual HLA-A2- and HLA-B57-restricted viral epitopes in HIV-1, with limited plasticity in their response to amino acid substitutions within these epitopes. The more diverse TCR usage observed for HIV-2-specific CD8 T cells was associated with an enhanced potential for CD8+ expansion and IFN- production on cross-recognition of variant epitopes. Our data suggest a mechanism that could account for any possible cross-protection that may be mediated by HIV-2-specific CD8+ T cells against HIV-1 infection. Furthermore, they have implications for HIV vaccine development, demonstrating an association between a polyclonal, virus-specific CD8+ T cell response and an enhanced capacity to tolerate substitutions within T cell epitopes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Accurate T-cell epitope prediction is a principal objective of computational vaccinology. As a service to the immunology and vaccinology communities at large, we have implemented, as a server on the World Wide Web, a partial least squares-base multivariate statistical approach to the quantitative prediction of peptide binding to major histocom-patibility complexes (MHC), the key checkpoint on the antigen presentation pathway within adaptive,cellular immunity. MHCPred implements robust statistical models for both Class I alleles (HLA-A*0101, HLA-A*0201, HLA-A*0202, HLA-A*0203,HLA-A*0206, HLA-A*0301, HLA-A*1101, HLA-A*3301, HLA-A*6801, HLA-A*6802 and HLA-B*3501) and Class II alleles (HLA-DRB*0401, HLA-DRB*0401and HLA-DRB* 0701).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hydrogen bonds play important roles in maintaining the structure of proteins and in the formation of most biomolecular protein-ligand complexes. All amino acids can act as hydrogen bond donors and acceptors. Among amino acids, Histidine is unique, as it can exist in neutral or positively charged forms within the physiological pH range of 5.0 to 7.0. Histidine can thus interact with other aromatic residues as well as forming hydrogen bonds with polar and charged residues. The ability of His to exchange a proton lies at the heart of many important functional biomolecular interactions, including immunological ones. By using molecular docking and molecular dynamics simulation, we examine the influence of His protonation/deprotonation on peptide binding affinity to MHC class II proteins from locus HLA-DP. Peptide-MHC interaction underlies the adaptive cellular immune response, upon which the next generation of commercially-important vaccines will depend. Consistent with experiment, we find that peptides containing protonated His residues bind better to HLA-DP proteins than those with unprotonated His. Enhanced binding at pH 5.0 is due, in part, to additional hydrogen bonds formed between peptide His+ and DP proteins. In acidic endosomes, protein His79β is predominantly protonated. As a result, the peptide binding cleft narrows in the vicinity of His79β, which stabilizes the peptide - HLA-DP protein complex. © 2014 Bentham Science Publishers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The hepatitis C virus (HCV) is able to persist as a chronic infection, which can lead to cirrhosis and liver cancer. There is evidence that clearance of HCV is linked to strong responses by CD8 cytotoxic T lymphocytes (CTLs), suggesting that eliciting CTL responses against HCV through an epitope-based vaccine could prove an effective means of immunization. However, HCV genomic plasticity as well as the polymorphisms of HLA I molecules restricting CD8 T-cell responses challenges the selection of epitopes for a widely protective vaccine. Here, we devised an approach to overcome these limitations. From available databases, we first collected a set of 245 HCV-specific CD8 T-cell epitopes, all known to be targeted in the course of a natural infection in humans. After a sequence variability analysis, we next identified 17 highly invariant epitopes. Subsequently, we predicted the epitope HLA I binding profiles that determine their potential presentation and recognition. Finally, using the relevant HLA I-genetic frequencies, we identified various epitope subsets encompassing 6 conserved HCV-specific CTL epitopes each predicted to elicit an effective T-cell response in any individual regardless of their HLA I background. We implemented this epitope selection approach for free public use at the EPISOPT web server. © 2013 Magdalena Molero-Abraham et al.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Age related macular degeneration (AMD) is the leading cause of blindness in individuals older than 65 years of age. It is a multifactorial disorder and identification of risk factors enables individuals to make life style choices that may reduce the risk of disease. This review discusses the role of genetics, sunlight, diet, cardiovascular factors, smoking, and alcohol as possible risk factors for AMD. Genetics plays a more significant role in AMD than previously thought, especially in younger patients, histocompatibility locus antigen (HLA) and complement system genes being the most significant. Whether the risk of AMD is increased by exposure to sunlight, cardiovascular risk factors, and diet is more controversial. Smoking is the risk factor most consistently associated with AMD. Current smokers are exposed to a two to three times higher risk of AMD than non-smokers and the risk increases with intensity of smoking. Moderate alcohol consumption is unlikely to increase the risk of AMD. Optometrists as front-line informers and educators of ocular health play a significant role in increasing public awareness of the risks of AMD. Cessation of smoking, the use of eye protection in high light conditions, dietary changes, and regular use of dietary supplements should all be considered to reduce the lifetime risk of AMD.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Age related macular degeneration (AMD) is the leading cause of blindness in individuals older than 65 years of age. It is a multifactorial disorder and identification of risk factors enables individuals to make life style choices that may reduce the risk of disease. This review discusses the role of genetics, sunlight, diet, cardiovascular factors, smoking, and alcohol as possible risk factors for AMD. Genetics plays a more significant role in AMD than previously thought, especially in younger patients, histocompatibility locus antigen (HLA) and complement system genes being the most significant. Whether the risk of AMD is increased by exposure to sunlight, cardiovascular risk factors, and diet is more controversial. Smoking is the risk factor most consistently associated with AMD. Current smokers are exposed to a two to three times higher risk of AMD than non-smokers and the risk increases with intensity of smoking. Moderate alcohol consumption is unlikely to increase the risk of AMD. Optometrists as front-line informers and educators of ocular health play a significant role in increasing public awareness of the risks of AMD. Cessation of smoking, the use of eye protection in high light conditions, dietary changes, and regular use of dietary supplements should all be considered to reduce the lifetime risk of AMD.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Age related macular degeneration (AMD) is the leading cause of blindness in individuals older than 65 years of age. It is a multifactorial disorder and identification of risk factors enables individuals to make life style choices that may reduce the risk of disease. This review discusses the role of genetics, sunlight, diet, cardiovascular factors, smoking, and alcohol as possible risk factors for AMD. Genetics plays a more significant role in AMD than previously thought, especially in younger patients, histocompatibility locus antigen (HLA) and complement system genes being the most significant. Whether the risk of AMD is increased by exposure to sunlight, cardiovascular risk factors, and diet is more controversial. Smoking is the risk factor most consistently associated with AMD. Current smokers are exposed to a two to three times higher risk of AMD than non-smokers and the risk increases with intensity of smoking. Moderate alcohol consumption is unlikely to increase the risk of AMD. Optometrists as front-line informers and educators of ocular health play a significant role in increasing public awareness of the risks of AMD. Cessation of smoking, the use of eye protection in high light conditions, dietary changes, and regular use of dietary supplements should all be considered to reduce the lifetime risk of AMD.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Males and age group 1 to 5 years show a much higher risk for childhood acute lymphoblastic leukemia (ALL). We performed a case-only genome-wide association study (GWAS), using the Illumina Infinium HumanCoreExome Chip, to unmask gender- and age-specific risk variants in 240 non-Hispanic white children with ALL recruited at Texas Children’s Cancer Center, Houston, Texas. Besides statistically most significant results, we also considered results that yielded the highest effect sizes. Existing experimental data and bioinformatic predictions were used to complement results, and to examine the biological significance of statistical results. Our study identified novel risk variants for childhood ALL. The SNP, rs4813720 (RASSF2), showed the statistically most significant gender-specific associations (P < 2 x 10-6). Likewise, rs10505918 (SOX5) yielded the lowest P value (P < 1 x 10-5) for age-specific associations, and also showed the statistically most significant association with age-at-onset (P < 1 x 10-4). Two SNPs, rs12722042 and 12722039, from the HLA-DQA1 region yielded the highest effect sizes (odds ratio (OR) = 15.7; P = 0.002) for gender-specific results, and the SNP, rs17109582 (OR = 12.5; P = 0.006), showed the highest effect size for age-specific results. Sex chromosome variants did not appear to be involved in gender-specific associations. The HLA-DQA1 SNPs belong to DQA1*01:07and confirmed previously reported male-specific association with DQA1*01:07. Twenty one of the SNPs identified as risk markers for gender- or age-specific associations were located in the transcription factor binding sites and 56 SNPs were non-synonymous variants, likely to alter protein function. Although bioinformatic analysis did not implicate a particular mechanism for gender- and age-specific associations, RASSF2 has an estrogen receptor-alpha binding site in its promoter. The unknown mechanisms may be due to lack of interest in gender- and age-specificity in associations. These results provide a foundation for further studies to examine the gender- and age-differential in childhood ALL risk. Following replication and mechanistic studies, risk factors for one gender or age group may have a potential to be used as biomarkers for targeted intervention for prevention and maybe also for treatment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Visceral leishmaniasis (VL) is endemic in many countries, including Brazil. The protozoan Leishmania infantum, is the etiological agent of VL, and is transmitted by the bite of female sandflies during the blood meal. The majority of subjects when exposed to the parasite do not develop the disease, because of development of Th1 cellular responses. Those who have develop signs of VL such as fever, weight loss, hepatosplenomegaly, have impairment of the cellular immune response, specific to the Leishmania antigens. We evaluated whether the specififc anergy during symptomatic VL, may be associated with changes in T cells costimulatory molecules or their ligands in CD14+ monocytes. There is an increase in CTLA-4 porcentage on CD4+ T lymphocytes (p=0.001) and ICOS on CD4+ and CD8+ T cells (p=0.002 to CD4+ and p=0.003 to CD8+), after stimulation by soluble Leishmania antigen (SLA) during active visceral leishmaniasis, and that there is a higher percentage of these molecules ex vivo, when comparing symptomatic to recovered individuals (p=0.04 to CTLA-4 in CD4+, and p=0.001 to ICOS in CD4+ and p=0.026 to CD8+). Moreover, we found a high gene expression of CTLA-4, OX-40 and ICOS during active VL. CD40, CD80, CD86, HLA-DR and ICOSL molecules do not suffer changes during disease. There is IFN-γ production by the peripheral blood cells, after SLA stimulation, by peripheral blood cells in symptomatic subjects; however, there is a decrease of the ratio IFN-γ/IL-10, which is reversed after clinical recovery. The impairment of some costimulatory molecules pathways during symptomatic VL could inhibit the ability of phagocytes to kill Leishmania and could facilitate their survival and the proliferation inside macrophages.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Major Histocompatibility Complex (MHC) comprises the most polymorphic loci in animals. MHC plays an important role during the first steps of the immune response in vertebrates. In humans, MHC molecules (also named human leukocyte antigens, HLA) were initially regarded as class I or class II molecules. Each of them, presents to different T cells subsets. MHC class I molecules, are heterodimers in which the heavy chain (alpha) has three extracellular domains, two of which (alpha 1 and alpha 2) are polymorphic and conform the antigen recognition sites (ARS). The ARS is thought to be subjected to balancing selection for variability, which is the cause of the very high polymorphism of the MHC molecules. Different pathogenic epitopes would be the evolutionary force causing balancing selection. MHC class I genes have been completely sequenced (α1 and α2 protein domains) and thoroughly studied in Gallus gallus (chicken) as well as in mammals. In fact, the MHC locus was first defined in chicken, specifically in the highly consanguineous variety „Leghorn‟. It has been found that, in the case of chickens the MHC genetic region is considerably smaller than it is in mammals (remarkably shorter introns were found in chickens), and is organized quite differently. The noteworthy presence of short introns in chickens; supported the hypothesis that chicken‟s MHC represented a „minimal essential MHC‟. Until now, it has been assumed that chicken (order Galliformes) MHC was similar to all species included in the whole class Aves...

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fungal ribotoxins that block protein synthesis can be useful warheads in the context of a targeted immunotoxin. α-Sarcin is a small (17 kDa) fungal ribonuclease produced by Aspergillus giganteus that functions by catalytically cleaving a single phosphodiester bond in the sarcin–ricin loop of the large ribosomal subunit, thus making the ribosome unrecognisable to elongation factors and leading to inhibition of protein synthesis. Peptide mapping using an ex vivo human T cell assay determined that α-sarcin contained two T cell epitopes; one in the N-terminal 20 amino acids and the other in the C-terminal 20 amino acids. Various mutations were tested individually within each epitope and then in combination to isolate deimmunised α-sarcin variants that had the desired properties of silencing T cell epitopes and retention of the ability to inhibit protein synthesis (equivalent to wild-type, WT α-sarcin). A deimmunised variant (D9T/Q142T) demonstrated a complete lack of T cell activation in in vitro whole protein human T cell assays using peripheral blood mononuclear cells from donors with diverse HLA allotypes. Generation of an immunotoxin by fusion of the D9T/Q142T variant to a single-chain Fv targeting Her2 demonstrated potent cell killing equivalent to a fusion protein comprising the WT α-sarcin. These results represent the first fungal ribotoxin to be deimmunised with the potential to construct a new generation of deimmunised immunotoxin therapeutics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.