987 resultados para HIPS-g-MA
Resumo:
This paper presented a new approach for preparing a new type of slow-release membrane-encapsulated urea fertilizer with starch-g-PLLA as biodegradable carrier materials. By solution-casting and washing rapidly with water the urea was individually encapsulated within the starch matrix modified by L-lactide through in situ graft-copolymerization.
Resumo:
Here, we report the first example that one enantiomer of a supramolecular cylinder can selectively stabilize human telomeric G-quadruplex DNA. The P-enantiomer of this cylinder has a strong preference for G-quadruplex over duplex DNA and, in the presence of sodium, can convert G-quadruplexes from an antiparallel to a hybrid structure. The compound's chiral selectivity and its ability to discriminate quadruplex DNA have been studied by DNA melting, circular dichroism, gel electrophoresis, fluorescence spectroscopy and S1 nuclease cleavage.
Resumo:
Ultrafine full-vulcanized polybutadiene rubber (UFBR) in particle sizes of ca. 50-100 nm has been used for modifying mechanical and processing performances of polypropylene (PP), and PP-g-maleic anhydride (PP-MA) has been used as a compatibilizer for enhancing the interfacial adhesion between the two components. The results show that PP/UFBR possesses rheological behaviors such as highly branched PP when UFBR content in blends reaches 10 wt%, while in contrast, the much low content of UFBR combining small amount of PP-MA endows the material with rheological characteristics of high melt strength materials like highly branched PP.
Resumo:
Ti45Zr35Ni13Pd7 alloys are prepared by melt spinning at different cooling rates (v). The phase structure and electrochemical hydrogen storage performance are investigated. When U is 10 m/s, the alloy consists of icosahedral quasicrystalline phase (I-phase), C14 Laves phase and a little amorphous phase. When v increases to 20 or 30 m/s, a mixed structure of I-phase and amorphous phase is formed. Maximum discharge capacity of alloy electrode decreases from 156 mAh/g (v = 10 m/s) to 139 mAh/g (v = 30 m/s) with increasing v. High-rate discharge ability at the discharge current density of 240 mA/g decreases monotonically from 61.2% (v = 10 m/s) to 56.8% (v = 30 m/s).
Resumo:
Well-defined 3D Fe3S4 flower-like microspheres were synthesized via a simple biomolecule-assisted hydrothermal process for the first time. On the basis of a series of contrast experiments, the probable growth mechanism and fabrication process of the products were proposed. The electrical conductivity property of the as-synthesized Fe3S4 sample exhibited a rectifying characteristic when a forward bias was applied for the bottom-contacted device. The magnetic properties of the products were studied as well and the results demonstrated that the products presented ferromagnetic properties related to the corresponding microstructure. In addition, we first verified that the Fe3S4 flower-like microspheres could store hydrogen electrochemically, and a discharge capacity of 214 mA h g(-1) was measured without any activation under normal atmospheric conditions at room temperature.
Resumo:
采用两步加热高温固相法合成了掺杂Nd3+的LiFe1-xNdxPO4/C复合材料(x=0,0.01,0.02,0.04,0.06,0.08)。用TG-DSC对前驱体进行分析和SQUID(超导量子干涉仪)对样品中Fe3+的磁性测定,优化了合成工艺条件;采用XRD、FE-SEM、EDS等方法分析了样品的结构并对其电化学性能进行了测试。结果表明:LiFe1-xNdxPO4/C复合材料具有橄榄石型结构;当Nd3+的掺杂量6%(物质的量分数)、煅烧温度700℃、煅烧时间16 h时,样品在0.2C(1C=170.0 mA.g-1)电流密度下的最大放电比容量可达165.2 mAh.g-1,循环100次后的容量保持率仍为92.8%,在1C、2C、5C下的最大放电比容量分别为146.8、125.7和114.8 mAh.g-1。通过测定样品在不同较低倍率下的放电比容量,采用外推法得出制备样品的实测理论比容量为168.7 mAh.g-1。
Resumo:
A cation-driven allosteric G-quadruplex DNAzyme (PW17) was utilized to devise a conceptually new class of DNA logic gate based on cation-tuned ligand binding and release. K+ favors the binding of hemin to parallel-stranded PW17, thereby promoting the DNAzyme activity, whereas Pb2+ induces PW17 to undergo a parallel-to-antiparallel conformation transition and thus drives hemin to release from the G-quadruplex, deactivating the DNAzyme. Such a K+-Pb2+ switched G-quadruplex, in fact, functions as a two-input INHIBIT logic gate. With the introduction of another input EDTA, this G-quadruplex can be further utilized to construct a reversibly operated IMPLICATION gate.
Resumo:
Two significant G-quadruplex aptamers named AGRO100 and T30695 are identified as multi functional aptamers that can bind the protein ligands nucleolin or HIV-1 integrase and hemin. Besides their strong binding to target proteins, both AGRO100 and T30695 exhibit high hemin-binding affinities comparable to that of the known aptamer (termed PS2M) selected by the in vitro evolution process. Most importantly, their corresponding hemin-DNA complexes reveal excellent peroxidase-like activities. higher than that of the reported hemin-PS2M DNAzyme. This enables these multifunctional aptamers to be applied to the sensitive detection of proteins. which is demonstrated by applying AGRO100 to the chemiluminescence detection of nucleolin expressed at the surface of HeLa cells. Based on the specific AGRO100-nucleolin interaction, the surface-expressed nucleolin of HeLa cells is labeled in situ with the hemin-AGRO100 DNAzyme, and then determined in the luminol-H2O2 system.
G-Quadruplex-based DNAzyme as a sensing platform for ultrasensitive colorimetric potassium detection
Resumo:
Hg2+ is able to inhibit the peroxidase-like DNAzyme function of a T-containing G-quadruplex DNA via Hg2+-mediated T-T base pairs, which enables the visual detection of Hg2+ in the TMB-H2O2 reaction system with high selectivity and sensitivity.
Resumo:
Styrene-b-(ethylene-co-1-butene)-b-styrene (SEBS) triblock copolymer functionalized with epsilon-caprolactam blocked allyl (3-isocyanate-4-tolyl) carbamate (SEBS-g-BTAI) was used to toughen polyamide 6 (PA6) via reactive blending. Compared to the PA6/SEBS blends, mechanical properties such as tensile strength, Young's modulus, especially Izod notched strength of PA6/SEBS-g-BTAI blends were improved distinctly. Both theological and FTIR results indicated a new copolymer formed by the reaction of end groups of PA6 and isocyanate group regenerated in the backbone of SEBS-g-BTAI. Smaller dispersed particle sizes with narrower distribution were found in PA6/SEBS-g-BTAI blends, via field emitted scanning electron microscopy (FESEM). The core-shell structures with PS core and PEB shell were also observed in the PA6/SEBS-g-BTAI blends via transmission electron microscopy (TEM), which might improve the toughening ability of the rubber particles.
Resumo:
A series of NIR organic chromophores with donor-pi-acceptor-pi-donor structure are synthesized. Good thermal stability and strong photoluminescence in solid state render them suitable for application in light-emitting diodes. Exclusive near-infrared emission at 1080 nm with external quantum efficiency of 0.28% is obtained from the nondoped OLEDs. The longest electroluminescence wave-length is 1220 nm.
Resumo:
series of a donor-acceptor-donor type of near-infrared (NIR) fluorescent chromophores based on [1,2,5]thiadiazolo[3,4-g]quinoxaline (TQ) as an electron acceptor and triphenylamine as an electron donor are synthesized and characterized. By introducing pendent phenyl groups or changing the pi-conjugation length in the TQ core, we tuned tile energy levels of these chromophores, resulting in the NIR emission in a range from 784 to 868 nm. High thermal stability and glass transition temperatures allow these chromophores to be used as dopant emitters, which can be processed by vapor deposition for the fabrication of organic light-emitting diodes (OLEDs) having the multilayered structure of ITO/MoO3/NPB/Alq(3):dopant emitter/BCP/Alq(3)/LiF/Al. The electroluminescence spectra of the devices based on these new chromophores cover a range from 748 to 870 nm. With 2 wt % of dopant 1, the LED device shows an exclusive NIR emission at 752 nm with the external quantum efficiency (EQE) as high as 1.12% over a wide range of current density (e.g., around 200 mA cm(-2)).
Resumo:
A new series of film-forming, low-bandgap chromophores (1a,b and 2a,b) were rationally designed with aid of a computational study., and then synthesized and characterized. To realize absorption and emission above the 1000 nm wavelength, the molecular design focuses on lowering the LUMO level by fusing common heterocyclic units into a large conjugated core that acts an electron acceptor and increasing the charge transfer by attaching the multiple electron-donating groups at the appropriate positions of the acceptor core. The chromophores have bandgap levels of 1.27-0.71 eV, and accordingly absorb at 746-1003 nm and emit at 1035-1290 nm in solution. By design, the relatively high molecular weight (up to 2400 g mol(-1)) and non-coplanar structure allow these near-infrared (NIR) chromophores to be readily spin-coated as uniform thin films and doped with other organic semiconductors for potential device applications. Doping with [6,6]-phenyl-C-61 butyric acid methyl ester leads to a red shift in the absorption on]), for la and 2a. An interesting NIR electrochromism was found for 2a, with absorption being turned on at 1034 nm when electrochemically switched (at 1000 mV) from its neutral state to a radical cation state. Furthermore, a large Stokes shift (256-318 nm) is also unique for this multidonor-acceptor type of chromophore.