918 resultados para HIGH PRESSURE
In vitro cumulative gas production techniques: History, methodological considerations and challenges
Resumo:
Methodology used to measure in vitro gas production is reviewed to determine impacts of sources of variation on resultant gas production profiles (GPP). Current methods include measurement of gas production at constant pressure (e.g., use of gas tight syringes), a system that is inexpensive, but may be less sensitive than others thereby affecting its suitability in some situations. Automated systems that measure gas production at constant volume allow pressure to accumulate in the bottle, which is recorded at different times to produce a GPP, and may result in sufficiently high pressure that solubility of evolved gases in the medium is affected, thereby resulting in a recorded volume of gas that is lower than that predicted from stoichiometric calculations. Several other methods measure gas production at constant pressure and volume with either pressure transducers or sensors, and these may be manual, semi-automated or fully automated in operation. In these systems, gas is released as pressure increases, and vented gas is recorded. Agitating the medium does not consistently produce more gas with automated systems, and little or no effect of agitation was observed with manual systems. The apparatus affects GPP, but mathematical manipulation may enable effects of apparatus to be removed. The amount of substrate affects the volume of gas produced, but not rate of gas production, provided there is sufficient buffering capacity in the medium. Systems that use a very small amount of substrate are prone to experimental error in sample weighing. Effect of sample preparation on GPP has been found to be important, but further research is required to determine the optimum preparation that mimics animal chewing. Inoculum is the single largest source of variation in measuring GPP, as rumen fluid is variable and sampling schedules, diets fed to donor animals and ratios of rumen fluid/medium must be selected such that microbial activity is sufficiently high that it does not affect rate and extent of fermentation. Species of donor animal may also cause differences in GPP. End point measures can be mathematically manipulated to account for species differences, but rates of fermentation are not related. Other sources of inocula that have been used include caecal fluid (primarily for investigating hindgut fermentation in monogastrics), effluent from simulated rumen fermentation (e.g., 'Rusitec', which was as variable as rumen fluid), faeces, and frozen or freeze-dried rumen fluid (which were both less active than fresh rumen fluid). Use of mixtures of cell-free enzymes, or pure cultures of bacteria, may be a way of increasing GPP reproducibility, while reducing reliance on surgically modified animals. However, more research is required to develop these inocula. A number of media have been developed which buffer the incubation and provide relevant micro-nutrients to the microorganisms. To date, little research has been completed on relationships between the composition of the medium and measured GPP. However, comparing GPP from media either rich in N or N-free, allows assessment of contributions of N containing compounds in the sample. (c) 2005 Published by Elsevier B.V.
Resumo:
Placental neurokinin B appears to be post-translationally modified by phosphocholine (PC) attached to the aspartyl side chain at residue 4 of the mature peptide. Corticotrophin releasing factor (CRF) was found to be expressed by the rat placenta with the main secreted forms being phosphocholinated proCRF+/- one or two polysaccharide moieties. A combination of high-pressure liquid chromatography (HPLC) and two-site immunometric analysis suggested that PC was also attached to the placental precursors of adrenocorticotrophin, hemokinin, activin and follistatin. However, the fully processed forms of rat placental activin and CRF were free of PC. Formerly, the parasitic filarial nematodes have used PC as a post-translational modification, attached via the polysaccharicle moiety of certain secretory glycoproteins to attenuate the host immune system allowing parasite survival, but it is the PC group itself which endows the carrier with the biological activity. The fact that treatment of proCRF peptides with phospholipase C but not endoglycosidase destroyed PC immunoreactivity suggested a simpler mode of attachment of PC to placental peptides than that used by nematodes. Thus, it is possible that by analogy the placenta uses its secreted phosphocholinated hormones to modulate the mother's immune system and help protect the placenta from rejection.
Resumo:
Parabens are used as preservatives in many thousands of cosmetic, food and pharmaceutical products to which the human population is exposed. Although recent reports of the oestrogenic properties of parabens have challenged current concepts of their toxicity in these consumer products, the question remains as to whether any of the parabens can accumulate intact in the body from the long-term, low-dose levels to which humans are exposed. Initial studies reported here show that parabens can be extracted from human breast tissue and detected by thin-layer chromatography. More detailed studies enabled identification and measurement of mean concentrations of individual parabens in samples of 20 human breast tumours by high-pressure liquid chromatography followed by tandem mass spectrometry. The mean concentration of parabens in these 20 human breast tumours was found to be 20.6 +/- 4.2 ng g(-1) tissue. Comparison of individual parabens showed that methylparaben was present at the highest level (with a mean value of 12.8 +/- 2.2 ng g(-1) tissue) and represents 62% of the total paraben recovered in the extractions. These studies demonstrate that parabens can be found intact in the human breast and this should open the way technically for more detailed information to be obtained on body burdens of parabens and in particular whether body burdens are different in cancer from those in normal tissues. Copyright (C) 2004 John Wiley Sons, Ltd.
Resumo:
Most existing crop scheduling models are cultivar specific and are developed using academic resources. As such they rarely meet the particular needs of a grower. A series of protocols have been created to generate effective schedules for a changing product range using data generated on site at a commercial nursery. A screening programme has been developed to help determine a cultivar's photoperiod sensitivity and vernalisation requirement. Experimental conditions were obtained using a cold store facility set to 5degreesC and photoperiod cloches. Eight and 16 hour photoperiod treatments were achieved at low cost by growing plants in cloches of opaque plastic with a motorised rolling screen. Natural light conditions were extended where necessary using a high pressure sodium lamp. Batches of plants were grown according to different schedules based on these treatments. The screening programme found Coreopsis grandiflora 'Flying Saucers' to be a long day plant. Data to form the basis of graphical tracks was taken using variations on commercial schedules. The work provides a nursery based approach to the continuous improvement of crop scheduling practises.
Resumo:
Time-resolved studies of germylene, GeH2, and dimethygermylene, GeMe2, generated by the 193 nm laser flash photolysis of appropriate precursor molecules have been carried out to try to obtain rate coefficients for their bimolecular reactions with dimethylgermane, Me2GeH2, in the gas-phase. GeH2 + Me2GeH2 was studied over the pressure range 1-100 Torr with SF6 as bath gas and at five temperatures in the range 296-553 K. Only slight pressure dependences were found (at 386, 447 and 553 K). RRKM modelling was carried out to fit these pressure dependences. The high pressure rate coefficients gave the Arrhenius parameters: log(A/cm(3) molecule(-1)s(-1)) = -10.99 +/- 0.07 and E-a = -(7.35 +/- 0.48) kJ mol(-1). No reaction could be found between GeMe2 + Me2GeH2 at any temperature up to 549 K, and upper limits of ca. 10(-14) cm(3) molecule(-1)s(-1) were set for the rate coefficients. A rate coefficient of (1.33 +/- 0.04) x 10(-11)cm(3) molecule(-1)s(-1) was also obtained for GeH2 + MeGeH3 at 296 K. No reaction was found between GeMe2 and MeGeH3. Rate coefficient comparisons showed, inter alia, that in the substrate germane Me-for-H substitution increased the magnitudes of rate coefficients significantly, while in the germylene Me-for-H substitution decreased the magnitudes of rate coefficients by at least four orders of magnitude. Quantum chemical calculations (G2(MP2,SVP)// B3LYP level) supported these findings and showed that the lack of reactivity of GeMe2 is caused by a positive energy barrier for rearrangement of the initially formed complexes. Full details of the structures of intermediate complexes and the discussion of their stabilities are given in the paper.
Resumo:
Time-resolved studies of germylene, GeH2, generated by the 193 nm laser flash photolysis of 3,4-dimethyl-1-germacyclopent-3-ene, have been carried out to obtain rate constants for its bimolecular reactions with ethyl- and diethylgermanes in the gas phase. The reactions were studied over the pressure range 1-100 Torr with SF6 as bath gas and at five temperatures in the range 297-564 K. Only slight pressure dependences were found for GeH2 + EtGeH3 (399, 486, and 564 K). The high pressure rate constants gave the following Arrhenius parameters: for GeH2 + EtGeH3, log A = -10.75 +/- 0.08 and E-a = -6.7 +/- 0.6 kJ mol(-1); for GeH2 + Et2GeH2, log A = -10.68 +/- 0.11 and E-a = -6.95 +/- 0.80 kJ mol(-1). These are consistent with fast, near collision-controlled, association processes at 298 K. RRKM modeling calculations are, for the most part, consistent with the observed pressure dependence of GeH2 + EtGeH3. The ethyl substituent effects have been extracted from these results and are much larger than the analogous methyl substituent effects in the SiH2 + methylsilane reaction series. This is consistent with a mechanistic model for Ge-H insertion in which the intermediate complex has a sizable secondary barrier to rearrangement.
Resumo:
Time resolved studies of germylene, GeH2, generated by laser flash photolysis of 3,4-dimethylgermacyclopentene-3, have been carried out to obtain rate constants for its bimolecular reaction with acetylene, C2H2. The reaction was studied in the gas-phase over the pressure range 1-100 Tort, with SF6 as bath gas, at 5 temperatures in the range 297-553 K. The reaction showed a very slight pressure dependence at higher temperatures. The high pressure rate constants (obtained by extrapolation at the three higher temperatures) gave the Arrhenius equation: log(k(infinity)/cm(3) molecule(-1) s(-1)) (-10.94 +/- 0.05) + (6.10 +/- 0.36 kJ mol(-1))/RTln10. These Arrhenius parameters are consistent with a fast reaction occurring at approximately 30% of the collision rate at 298 K. Quantum chemical calculations (both DFT and ab initio G2//B3LYP and G2//QCISD) of the GeC2H4 potential energy surface (PES), show that GeH2 + C2H2 react initially to form germirene which can isomerise to vinylgermylene with a relatively low barrier. RRKM modelling, based on a loose association transition state, but assuming vinylgermylene is the end product (used in combination with a weak collisional deactivation model) predicts a strong pressure dependence using the calculated energies, in conflict with the experimental evidence. The detailed GeC2H4 PES shows considerable complexity with ten other accessible stable minima (B3LYP level), the three most stable of which are all germylenes. Routes through this complex surface were examined in detail. The only product combination which appears capable of satisfying the (P-3) + C2H4.C2H4 was confirmed as a product by GC observed lack of a strong pressure dependence is Ge(P-3) + C2H4. C2H4 was confirmed as a product by GC analysis. Although the formation of these products are shown to be possible by singlet-triplet curve crossing during dissociation of 1-germiranylidene (1-germacyclopropylidene), it seems more likely (on thermochernical grounds) that the triplet biradical, (GeCH2CH2.)-Ge-., is the immediate product precursor. Comparisons are made with the reaction of SiH2 with C2H2.
Resumo:
Time-resolved kinetic studies of the reaction of silylene, SiH2, with H2O and with D2O have been carried out in the gas phase at 296 and at 339 K, using laser flash photolysis to generate and monitor SiH2. The reaction was studied over the pressure range 10-200 Torr with SF6 as bath gas. The second-order rate constants obtained were pressure dependent, indicating that the reaction is a third-body assisted association process. Rate constants at 339 K were about half those at 296 K. Isotope effects, k(H)/k(D), were small averaging 1.076 0.080, suggesting no involvement of H- (or D-) atom transfer in the rate determining step. RRKM modeling was undertaken based on a transition state appropriate to formation of the expected zwitterionic donoracceptor complex, H2Si...OH2. Because the reaction is close to the low pressure (third order) region, it is difficult to be definitive about the activated complex structure. Various structures were tried, both with and without the incorporation of rotational modes, leading to values for the high-pressure limiting (i.e., true secondorder) rate constant in the range 9.5 x 10(-11) to 5 x 10(-10) cm(3) molecule' s(-1). The RRKM modeling and mechanistic interpretation is supported by ab initio quantum calculations carried out at the G2 and G3 levels. The results are compared and contrasted with the previous studies.
Resumo:
Time resolved studies of silylene, SiH2, generated by the 193 nm laser. ash photolysis of phenylsilane, have been carried out to obtain rate coefficients for its bimolecular reactions with methyl-, dimethyl- and trimethyl-silanes in the gas phase. The reactions were studied over the pressure range 3 - 100 Torr with SF6 as bath gas and at five temperatures in the range 300 - 625 K. Only slight pressure dependences were found for SiH2 + MeSiH3 ( 485 and 602 K) and for SiH2 + Me2SiH2 ( 600 K). The high pressure rate constants gave the following Arrhenius parameters: [GRAPHICS] These are consistent with fast, near to collision-controlled, association processes. RRKM modelling calculations are consistent with the observed pressure dependences ( and also the lack of them for SiH2 + Me3SiH). Ab initio calculations at both second order perturbation theory (MP2) and coupled cluster (CCSD(T)) levels, showed the presence of weakly-bound complexes along the reaction pathways. In the case of SiH2 + MeSiH3 two complexes, with different geometries, were obtained consistent with earlier studies of SiH2 + SiH4. These complexes were stabilised by methyl substitution in the substrate silane, but all had exceedingly low barriers to rearrangement to product disilanes. Although methyl groups in the substrate silane enhance the intrinsic SiH2 insertion rates, it is doubtful whether the intermediate complexes have a significant effect on the kinetics. A further calculation on the reaction MeSiH + SiH4 shows that the methyl substitution in the silylene should have a much more significant kinetic effect ( as observed in other studies).
Resumo:
Cycloaddition reactions have been employed in polymer synthesis since the mid-nineteen sixties. This critical review will highlight recent notable advances in this field. For example, [2 + 2] cycloaddition reactions have been utilized in numerous polymerizations to enable the construction of strained polymer systems such as poly(2-azetidinone)s that can, in turn, afford polyfunctional beta-amino acid derived polymers. Polymers have also been synthesized successfully via (3 + 2) cycloaddition methods utilizing both thermal and high-pressure conditions. 'Click chemistry'-a process involving the reaction of azides with olefins, has also been adopted to generate linear and hyperbranched polymer architectures in a very efficient manner. [4 + 2] Cycloadditions have also been utilized under thermal and high-pressure conditions to produce rigid polymers such as polyimides and polyphenylenes. These cycloaddition polymerization methods afford polymers with potential for use in high performance polymers applications such as high temperature resistant coatings and polymeric organic light emitting diodes.
Resumo:
The high pressure liquid chromatography method for determination of glutathione in free and protein-bound forms was re-established and has successfully been developed to measure glutathione related thiol compounds, i.e. L-cysteine, gamma-L-glutamyl-L-cysteine and L-cysteinyl-L-glycine, in both free and protein-bound forms. The natural levels of those compounds in typical strong, weak flours, and flours from 36 wheat varieties grown in the UK were investigated. The total free and protein-bound glutathione compounds found in the 36 UK varieties was 358 +/- 51 and 190 +/- 17 nmol/g, respectively. Multiple correlation analysis did not show a clear-cut relationship between the natural level of glutathione and any related thiol compound in either free or protein-bound forms and flour quality attributes, including rheological properties, baking performance, protein content and SDS sedimentation test values. Therefore, it can be suggested that glutathione and related thiol compounds at natural levels do not lead to significant differences in the rheological properties of dough and the baking performance of flour. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
The chemical composition and fractional distribution of protein isolates prepared from species of Mucuna bean were studied. Using six different extraction media, the yield of protein based on the Kjeldahl procedure varied from 8% to 34%, and the protein content varied from 75% to 95%. When the yields were high, the colour of the isolates generally tended to be dark and unsatisfactory. Hence, the use of chemical treatments and high pressure processing were explored. The solubility maxima for the protein isolates in water were found to occur at pH values of 2.0 and 11.0, while the pH corresponding to minimum solubility (i.e. isoelectric region) occurred at pH values of 4.0 and 5.0. The total essential amino acid in the isolates ranged from 495 to 557 mg g(-1) protein, which compares favourably with the recommended level for pre-school and school children. Methionine and cysteine were the limiting amino acids. A key nutritional attribute of the protein isolates was its high lysine content. The isolate can therefore complement cereal-based foods which are deficient in lysine. The proteins mainly consisted of albumins, glutelins and globulins. Prolamins were only present in trace concentration (< 0.3%). Gel filtration chromatograms of the isolates indicated the presence of major protein fractions with molecular weights of 40 and 15 kDa, while gel electrophoresis (SDS-PAGE) indicated a major broad zone with molecular weights of 36 +/- 7 and 17.3 +/- 13 kDa. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Time-resolved studies of chlorosilylene, ClSiH, generated by the 193 nm laser flash photolysis of 1-chloro-1-silacyclopent-3-ene, are carried out to obtain rate constants for its bimolecular reaction with ethene, C2H4, in the gas-phase. The reaction is studied over the pressure range 0.13-13.3 kPa (with added SF6) at five temperatures in the range 296-562 K. The second order rate constants, obtained by extrapolation to the high pressure limits at each temperature, fitted the Arrhenius equation: log(k(infinity)/cm(3) molecule(-1) s(-1))=(-10.55 +/- 0.10) + (3.86 +/- 0.70) kJ mol(-1)/RT ln10. The Arrhenius parameters correspond to a loose transition state and the rate constant at room temperature is 43% of that for SiH2 + C2H4, showing that the deactivating effect of Cl-for-H substitution in the silylene is not large. Quantum chemical calculations of the potential energy surface for this reaction at the G3MP2//B3LYP level show that, as well as 1-chlorosilirane, ethylchlorosilylene is a viable product. The calculations reveal how the added effect of the Cl atom on the divalent state stabilisation of ClSiH influences the course of this reaction. RRKM calculations of the reaction pressure dependence suggest that ethylchlorosilylene should be the main product. The results are compared and contrasted with those of SiH2 and SiCl2 with C2H4.
Resumo:
Time-resolved kinetic studies of silylene, SiH2, generated by laser flash photolysis of phenylsilane, have been carried out to obtain rate constants for its bimolecular reactions with oxirane, oxetane, and tetrahydrofuran (THF). The reactions were studied in the gas phase over the pressure range 1-100 Torr in SF6 bath gas, at four or five temperatures in the range 294-605 K. All three reactions showed pressure dependences characteristic of third-body-assisted association reactions with, surprisingly, SiH2 + oxirane showing the least and SiH2 + THF showing the most pressure dependence. The second-order rate constants obtained by extrapolation to the high-pressure limits at each temperature fitted the Arrhenius equations where the error limits are single standard deviations: log(k(oxirane)(infinity)/cm(3) molecule(-1) s(-1)) = (-11.03 +/- 0.07) + (5.70 +/- 0.51) kJ mol(-1)/RT In 10 log(k(oxetane)(infinity)/cm(3) molecule(-1) s(-1)) = (-11.17 +/- 0.11) + (9.04 +/- 0.78) kJ mol(-1)/RT In 10 log(k(THF)(infinity)/cm(3) molecule(-1) s(-1)) = (-10.59 +/- 0.10) + (5.76 +/- 0.65) kJ mol(-1)/RT In 10 Binding-energy values of 77, 97, and 92 kJ mol(-1) have been obtained for the donor-acceptor complexes of SiH2 with oxirane, oxetane, and THF, respectively, by means of quantum chemical (ab initio) calculations carried Out at the G3 level. The use of these values to model the pressure dependences of these reactions, via RRKM theory, provided a good fit only in the case of SiH2 + THF. The lack of fit in the other two cases is attributed to further reaction pathways for the association complexes of SiH2 with oxirane and oxetane. The finding of ethene as a product of the SiH2 + oxirane reaction supports a pathway leading to H2Si=O + C2H4 predicted by the theoretical calculations of Apeloig and Sklenak.
Resumo:
Time-resolved kinetic studies of the reaction of germylene, GeH2, generated by laser. ash photolysis of 3,4-dimethyl-1-germacyclopent-3-ene, have been carried out to obtain rate constants for its bimolecular reaction with 2-butyne, CH3C CCH3. The reaction was studied in the gas phase over the pressure range 1-100 Torr in SF6 bath gas, at five temperatures in the range 300-556 K. The second order rate constants obtained by extrapolation to the high pressure limits at each temperature, fitted the Arrhenius equation: log(k(infinity)/cm(3) molecule(-1) s(-1)) = (-10.46 +/- 10.06) + (5.16 +/- 10.47) kJ mol(-1)/ RT ln 10 Calculations of the energy surface of the GeC4H8 reaction system were carried out employing the additivity principle, by combining previous quantum chemical calculations of related reaction systems. These support formation of 1,2-dimethylvinylgermylene (rather than 2,3-dimethylgermirene) as the end product. RRKM calculations of the pressure dependence of the reaction are in reasonable agreement with this finding. The reactions of GeH2 with C2H2 and with CH3CRCCH3 are compared and contrasted.