912 resultados para H-infinity control design
Resumo:
The paper describes the uniqueness and invasiveness of water hyacinth (Eichhornia crassipes) on Lake Kainji (Nigeria). The mechanical blocking device design concept based on the Kainji Lake flooding regime is also highlighted. Water hyacinth coverage, that was over 23% at high water in level in 1994, was reduced to 0.75% in the same period in 2000. Although this feat cannot be wholly ascribed to mechanical control effort alone, the first year of the device's full operation more than 1.04 million kg of fresh weight of water hyacinth were trapped, collected and deposited in two separate dumping pits, each at about 1 km off the shoreline of either side of the Lake. On further analysis over a period of one year of uncleared inflow of water hyacinth indicated the effectiveness of the bloom. Recommendations are advanced for the use of such local but highly technical knowledge to control floating water hyacinth that is vastly taking over the intricate network of Nigerian water systems and within the West African sub-region
Resumo:
Understanding the mechanisms of enzymes is crucial for our understanding of their role in biology and for designing methods to perturb or harness their activities for medical treatments, industrial processes, or biological engineering. One aspect of enzymes that makes them difficult to fully understand is that they are in constant motion, and these motions and the conformations adopted throughout these transitions often play a role in their function.
Traditionally, it has been difficult to isolate a protein in a particular conformation to determine what role each form plays in the reaction or biology of that enzyme. A new technology, computational protein design, makes the isolation of various conformations possible, and therefore is an extremely powerful tool in enabling a fuller understanding of the role a protein conformation plays in various biological processes.
One such protein that undergoes large structural shifts during different activities is human type II transglutaminase (TG2). TG2 is an enzyme that exists in two dramatically different conformational states: (1) an open, extended form, which is adopted upon the binding of calcium, and (2) a closed, compact form, which is adopted upon the binding of GTP or GDP. TG2 possess two separate active sites, each with a radically different activity. This open, calcium-bound form of TG2 is believed to act as a transglutaminse, where it catalyzes the formation of an isopeptide bond between the sidechain of a peptide-bound glutamine and a primary amine. The closed, GTP-bound conformation is believed to act as a GTPase. TG2 is also implicated in a variety of biological and pathological processes.
To better understand the effects of TG2’s conformations on its activities and pathological processes, we set out to design variants of TG2 isolated in either the closed or open conformations. We were able to design open-locked and closed-biased TG2 variants, and use these designs to unseat the current understanding of the activities and their concurrent conformations of TG2 and explore each conformation’s role in celiac disease models. This work also enabled us to help explain older confusing results in regards to this enzyme and its activities. The new model for TG2 activity has immense implications for our understanding of its functional capabilities in various environments, and for our ability to understand which conformations need to be inhibited in the design of new drugs for diseases in which TG2’s activities are believed to elicit pathological effects.
Resumo:
[ES]Este proyecto consiste en el diseño de un sistema de control integrado para inversores de potencia monofásicos haciendo uso del algoritmo de eliminación de armónicos. De este modo, permite generar una señal de salida con frecuencia controlada, ideal para la alimentación de motores eléctricos monofásicos. El objetivo del mismo es lograr la implementación de un algoritmo de rendimiento superior a las alternativas PWM para casos de frecuencia de salida elevada. El sistema incluye el software y hardware necesario para implementación completa, así como los documentos necesarios para su fabricación en serie.
Resumo:
[ES]En este documento se realiza el diseño de un procedimiento para la validación de los equipos necesarios a la hora de implantar un sistema de control de acceso mediante RFID pasivo. Para ello, se analizarán los distintos tipos de sistemas RFID y se elige uno para la posterior adquisición de los dispositivos necesarios. Se comprobará la normativa vigente ETSI, que regula las emisiones de potencia de los equipos de identificación por radiofrecuencia, y se verificará que se cumplen los requisitos necesarios para implantar el sistema de control de acceso realizando un análisis funcional en situaciones reales.
Resumo:
This work quantifies the nature of delays in genetic regulatory networks and their effect on system dynamics. It is known that a time lag can emerge from a sequence of biochemical reactions. Applying this modeling framework to the protein production processes, delay distributions are derived in a stochastic (probability density function) and deterministic setting (impulse function), whilst being shown to be equivalent under different assumptions. The dependence of the distribution properties on rate constants, gene length, and time-varying temperatures is investigated. Overall, the distribution of the delay in the context of protein production processes is shown to be highly dependent on the size of the genes and mRNA strands as well as the reaction rates. Results suggest longer genes have delay distributions with a smaller relative variance, and hence, less uncertainty in the completion times, however, they lead to larger delays. On the other hand large uncertainties may actually play a positive role, as broader distributions can lead to larger stability regions when this formalization of the protein production delays is incorporated into a feedback system.
Furthermore, evidence suggests that delays may play a role as an explicit design into existing controlling mechanisms. Accordingly, the reccurring dual-feedback motif is also investigated with delays incorporated into the feedback channels. The dual-delayed feedback is shown to have stabilizing effects through a control theoretic approach. Lastly, a distributed delay based controller design method is proposed as a potential design tool. In a preliminary study, the dual-delayed feedback system re-emerges as an effective controller design.
Resumo:
[ES]El objetivo de este proyecto es el diseño e implementación del modelo de la estación FMS 201 (alimentación de la base) y el diseño e implementación del control de la estación. Esta estación pertenece a la serie FMS 200 (sistema didáctico modular de ensamblaje flexible) distribuido por la empresa SMC. Se dispone uno en el laboratorio de investigación del departamento de Ingeniería de Sistemas y Automática de la Escuela Superior de Ingeniería de Bilbao (EHU/UPV). Para el desarrollo e implementación del modelo se usará la herramienta informática Automation Studio. Para el control del modelo se usará el PLC. Para el intercambio de información entre modelo y controlador se utilizará la comunicación OPC Para el control de la estación se usa un PLC S7-300 de la marca SIEMENS. Se finaliza el documento realizando las pruebas de validación del modelo desarrollado, ejecutándose el programa de control en el PLC y corriendo el modelo desarrollado en el PC.