998 resultados para Guibert, Hervé
Resumo:
Saproxylic insect communities inhabiting tree hollow microhabitats correspond with large food webs which simultaneously are constituted by multiple types of plant-animal and animal-animal interactions, according to the use of trophic resources (wood- and insect-dependent sub-networks), or to trophic habits or interaction types (xylophagous, saprophagous, xylomycetophagous, predators and commensals). We quantitatively assessed which properties of specialised networks were present in a complex networks involving different interacting types such as saproxylic community, and how they can be organised in trophic food webs. The architecture, interacting patterns and food web composition were evaluated along sub-networks, analysing their implications to network robustness from random and directed extinction simulations. A structure of large and cohesive modules with weakly connected nodes was observed throughout saproxylic sub-networks, composing the main food webs constituting this community. Insect-dependent sub-networks were more modular than wood-dependent sub-networks. Wood-dependent sub-networks presented higher species degree, connectance, links, linkage density, interaction strength, and were less specialised and more aggregated than insect-dependent sub-networks. These attributes defined high network robustness in wood-dependent sub-networks. Finally, our results emphasise the relevance of modularity, differences among interacting types and interrelations among them in modelling the structure of saproxylic communities and in determining their stability.
Resumo:
Saproxylic beetle diversity is high at the Cabañeros National Park (central Spain), where woodland habitats exhibit remarkable heterogeneity. Our aim was to explain the diversity of saproxylic beetles, focusing on species turnover among mature woodland types. We surveyed five woodland types that represented the heterogeneity of the park’s woodland habitats. Beetles were collected using window traps over a period of 20 months. The Jaccard Similarity Index was used as indirect value of beta diversity among woodlands and to test the relation between species turnover and geographical distance. We also identified the contribution of species turnover to landscape diversity by using a partitioning model. Moreover, the presence of mixed woodlands (more than one tree species) allowed us to attempt to valorise the effect of tree species (coupled with their historical management) on species turnover among woodlands. Finally, we looked for different saproxylic beetle preferences for habitat and tree species using an indicator value method. We found that saproxylic beetle species composition varied significantly among the studied woodlands. The variation in species turnover was independent from the distance among woodlands, which suggested that beetle dispersal abilities could not explain this high turnover. Tree species within woodlands were a key factor that increased diversity turnover in woodlands and, consequently, the diversity of the park. Moreover, we found saproxylic beetle species that had different habitat and tree species preferences. We conclude that woodland heterogeneity (highly affected by woodland composition) seems to be the driving force for saproxylic beetle diversity in this protected area.
Resumo:
The choice of sampling methods to survey saproxylic beetles is a key aspect to assessing conservation strategies for one of the most endangered assemblages in Europe. We evaluated the efficiency of three sampling methods: baited tube traps (TT), window traps in front of a hollow opening (WT), and emergence traps covering tree hollows (ET) to study richness and diversity of saproxylic beetle assemblages at species and family levels in Mediterranean woodlands. We also examined trap efficiency to report ecological diversity, and changes in the relative richness and abundance of species forming trophic guilds: xylophagous, saprophagous/saproxylophagous, xylomycetophagous, predators and commensals. WT and ET were similarly effective in reporting species richness and diversity at species and family levels, and provided an accurate profile of both the flying active and hollow-linked saproxylic beetle assemblages. WT and ET were the most complementary methods, together reporting more than 90 % of richness and diversity at both species and family levels. Diversity, richness and abundance of guilds were better characterized by ET, which indicates higher efficiency in outlining the ecological community of saproxylics that inhabit tree hollows. TT were the least effective method at both taxonomic levels, sampling a biased portion of the beetle assemblage attracted to trapping principles, however they could be used as a specific method for families such as Bostrichiidae, Biphyllidae, Melyridae, Mycetophagidae or Curculionidae Scolytinae species. Finally, ET and WT combination allows a better characterization of saproxylic assemblages in Mediterranean woodland, by recording species with different biology and linked to different microhabitat types.
Resumo:
The “dehesa” is a traditional Iberian agrosilvopastoral ecosystem characterized by the presence of old scattered trees that are considered as “keystone-structures”, which favor the presence of a wide range of biodiversity. We show the high diversity of saproxylic beetles and syrphids (Diptera) in this ecosystem, including red-listed species. We analyzed whether saproxylic species distribution in the “dehesa” was affected by tree density per hectare, dominant tree species or vegetation coverage. Species diversity did not correlate with tree density; however, it was affected by tree species and shrub coverage but in a different way for each taxon. The highest beetle diversity was linked to Quercus pyrenaica, the most managed tree species, with eight indicator species. In contrast, Q. rotundifolia hosted more species of saproxylic syrphids. Regarding vegetation coverage, shrub coverage was the only variable that affected insect richness, again in a different way for both taxa. In contrast, beetle species composition was only affected by dominant tree species whereas syrphid species composition was not affected by tree species or shrub coverage. We concluded that the high diversity of saproxylic insects in the “dehesa” is related to its long history of agrosilvopastoral management, which has generated landscape heterogeneity and preserved old mature trees. However, the richness and composition of different taxa of insects respond in different ways to tree species and vegetation coverage. Consequently, conservation strategies should try to maintain traditional management, and different saproxylic taxa should be used to monitor the effect of management on saproxylic diversity.
Resumo:
The presence of polyoxymethylene (POM) in cometary grains has been debated years ago. Although never proven, its presence can not be excluded. Rosetta, the ESA mission to comet 67P/Churyumov–Gerasimenko, may answer this question. On board the spacecraft, COSIMA (COmetary Secondary Ion Mass Analyzer) will analyze the grains ejected from the nucleus using a Time Of Flight Secondary Ion Mass Spectrometer (TOF-SIMS). In this paper we report the extent to which COSIMA will be able to detect POM if this compound is present on cometary grains. We have analyzed two kinds of POM polymers with a laboratory model of COSIMA. Positive mass spectra display alternating sequence of peaks with a separation of 30.011 Da between 1 and 600 Da related to formaldehyde and its oligomers but also to the fragmentation of these oligomers. The separation of 30.011 Da of numbers peaks, corresponding to the fragmentation into H2CO is characteristic of POM and we show that it could be highlight by mathematical treatment. POM lifetime on COSIMA targets have also been studied as POM is thermally instable. It can be concluded that the cometary grains analysis have to be planned not too long after their collection in order to maximize the chances to detect POM. This work was supported by the Centre National d'Etudes Spatiales (CNES).
Resumo:
The present data set includes 268,127 vertical in situ fluorescence profiles obtained from several available online databases and from published and unpublished individual sources. Metadata about each profiles are given in the file provided here in further details. The majority of profiles comes from the National Oceanographic Data Center (NODC) and the fluorescence profiles acquired by Bio-Argo floats available on the Oceanographic Autonomous Observations (OAO) platform (63.7% and 12.5% respectively).
Different modes of acquisition were used to collect the data presented in this study: (1) CTD profiles are acquired using a fluorometer mounted on a CTD-rosette; (2) OSD (Ocean Station Data) profiles are derived from water samples and are defined as low resolution profiles; (3) the UOR (Undulating Oceanographic Recorder) profiles are acquired by a