933 resultados para Growth Hormone-binding Protein


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although most eukaryotic mRNAs need a functional cap binding complex eIF4F for efficient 5′ end- dependent scanning to initiate translation, picornaviral, hepatitis C viral, and a few cellular RNAs have been shown to be translated by internal ribosome entry, a mechanism that can operate in the presence of low levels of functional eIF4F. To identify cellular mRNAs that can be translated when eIF4F is depleted or in low abundance and that, therefore, may contain internal ribosome entry sites, mRNAs that remained associated with polysomes were isolated from human cells after infection with poliovirus and were identified by using a cDNA microarray. Approximately 200 of the 7000 mRNAs analyzed remained associated with polysomes under these conditions. Among the gene products encoded by these polysome-associated mRNAs were immediate-early transcription factors, kinases, and phosphatases of the mitogen-activated protein kinase pathways and several protooncogenes, including c-myc and Pim-1. In addition, the mRNA encoding Cyr61, a secreted factor that can promote angiogenesis and tumor growth, was selectively mobilized into polysomes when eIF4F concentrations were reduced, although its overall abundance changed only slightly. Subsequent tests confirmed the presence of internal ribosome entry sites in the 5′ noncoding regions of both Cyr61 and Pim-1 mRNAs. Overall, this study suggests that diverse mRNAs whose gene products have been implicated in a variety of stress responses, including inflammation, angiogenesis, and the response to serum, can use translational initiation mechanisms that require little or no intact cap binding protein complex eIF4F.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The stability of the ompA mRNA depends on the bacterial growth rate. The 5′ untranslated region is the stability determinant of this transcript and the target of the endoribonuclease, RNase E, the key player of mRNA degradation. An RNA-binding protein with affinity for the 5′ untranslated region ompA was purified and identified as Hfq, a host factor initially recognized for its function in phage Qβ replication. The ompA RNA-binding activity parallels the amount of Hfq, which is elevated in bacteria cultured at slow growth rate, a condition leading to facilitated degradation of the ompA mRNA. In hfq mutant cells with a deficient Hfq gene product, the RNA-binding activity is missing, and analysis of the ompA mRNA showed that the growth-rate dependence of degradation is lost. Furthermore, the half-life of the ompA mRNA is prolonged in the mutant cells, irrespective of growth rate. Hfq has no affinity for the lpp transcript whose degradation, like that of bulk mRNA, is not affected by bacterial growth rate. Compatible with our results, we found that the intracellular concentration of RNase E and its associated degradosome components is independent of bacterial growth rate. Thus our results suggest a regulatory role for Hfq that specifically facilitates the ompA mRNA degradation in a growth rate-dependent manner.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human RIN1 was first characterized as a RAS binding protein based on the properties of its carboxyl-terminal domain. We now show that full-length RIN1 interacts with activated RAS in mammalian cells and defines a minimum region of 434 aa required for efficient RAS binding. RIN1 interacts with the “effector domain” of RAS and employs some RAS determinants that are common to, and others that are distinct from, those required for the binding of RAF1, a known RAS effector. The same domain of RIN1 that binds RAS also interacts with 14-3-3 proteins, extending the similarity between RIN1 and other RAS effectors. When expressed in mammalian cells, the RAS binding domain of RIN1 can act as a dominant negative signal transduction blocker. The amino-terminal domain of RIN1 contains a proline-rich sequence similar to consensus Src homology 3 (SH3) binding regions. This RIN1 sequence shows preferential binding to the ABL–SH3 domain in vitro. Moreover, the amino-terminal domain of RIN1 directly associates with, and is tyrosine phosphorylated by, c-ABL. In addition, RIN1 encodes a functional SH2 domain that has the potential to activate downstream signals. These data suggest that RIN1 is able to mediate multiple signals. A differential pattern of expression and alternate splicing indicate several levels of RIN1 regulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The v-jun oncogene encodes a nuclear DNA binding protein that functions as a transcription factor and is part of the activator protein 1 complex. Oncogenic transformation by v-jun is thought to be mediated by the aberrant expression of specific target genes. To identify such Jun-regulated genes and to explore the mechanisms by which Jun affects their expression, we have fused the full-length v-Jun and an amino-terminally truncated form of v-Jun to the hormone-binding domain of the human estrogen receptor. The two chimeric proteins function as ligand-inducible transactivators. Expression of the fusion proteins in chicken embryo fibroblasts causes estrogen-dependent transformation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent cloning of a rat brain phosphatidylinositol 3,4,5-trisphosphate binding protein, centaurin α, identified a novel gene family based on homology to an amino-terminal zinc-binding domain. In Saccharomyces cerevisiae, the protein with the highest homology to centaurin α is Gcs1p, the product of the GCS1 gene. GCS1 was originally identified as a gene conditionally required for the reentry of cells into the cell cycle after stationary phase growth. Gcs1p was previously characterized as a guanosine triphosphatase-activating protein for the small guanosine triphosphatase Arf1, and gcs1 mutants displayed vesicle-trafficking defects. Here, we have shown that similar to centaurin α, recombinant Gcs1p bound phosphoinositide-based affinity resins with high affinity and specificity. A novel GCS1 disruption strain (gcs1Δ) exhibited morphological defects, as well as mislocalization of cortical actin patches. gcs1Δ was hypersensitive to the actin monomer-sequestering drug, latrunculin-B. Synthetic lethality was observed between null alleles of GCS1 and SLA2, the gene encoding a protein involved in stabilization of the actin cytoskeleton. In addition, synthetic growth defects were observed between null alleles of GCS1 and SAC6, the gene encoding the yeast fimbrin homologue. Recombinant Gcs1p bound to actin filaments, stimulated actin polymerization, and inhibited actin depolymerization in vitro. These data provide in vivo and in vitro evidence that Gcs1p interacts directly with the actin cytoskeleton in S. cerevisiae.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

SLA1 was identified previously in budding yeast in a genetic screen for mutations that caused a requirement for the actin-binding protein Abp1p and was shown to be required for normal cortical actin patch structure and organization. Here, we show that Sla1p, like Abp1p, localizes to cortical actin patches. Furthermore, Sla1p is required for the correct localization of Sla2p, an actin-binding protein with homology to talin implicated in endocytosis, and the Rho1p-GTPase, which is associated with the cell wall biosynthesis enzyme β-1,3-glucan synthase. Mislocalization of Rho1p in sla1 null cells is consistent with our observation that these cells possess aberrantly thick cell walls.  Expression of mutant forms of Sla1p in which specific domains were deleted showed that the phenotypes associated with the full deletion are functionally separable. In particular, a region of Sla1p encompassing the third SH3 domain is important for growth at high temperatures, for the organization of cortical actin patches, and for nucleated actin assembly in a permeabilized yeast cell assay. The apparent redundancy between Sla1p and Abp1p resides in the C-terminal repeat region of Sla1p. A homologue of SLA1 was identified in Schizosaccharomyces pombe. Despite relatively low overall sequence homology, this gene was able to rescue the temperature sensitivity associated with a deletion of SLA1 in Saccharomyces cerevisiae.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Saccharomyces cerevisiae is dimorphic and switches from a yeast form to a pseudohyphal (PH) form when starved for nitrogen. PH cells are elongated, bud in a unipolar manner, and invade the agar substrate. We assessed the requirements for actin in mediating the dramatic morphogenetic events that accompany the transition to PH growth. Twelve “alanine scan” alleles of the single yeast actin gene (ACT1) were tested for effects on filamentation, unipolar budding, agar invasion, and cell elongation. Some act1 mutations affect all phenotypes, whereas others affect only one or two aspects of PH growth. Tests of intragenic complementation among specific act1 mutations support the phenotypic evidence for multiple actin functions in filamentous growth. We present evidence that interaction between actin and the actin-binding protein fimbrin is important for PH growth and suggest that association of different actin-binding proteins with actin mediates the multiple functions of actin in filamentous growth. Furthermore, characterization of cytoskeletal structure in wild type and act1/act1 mutants indicates that PH cell morphogenesis requires the maintenance of a highly polarized actin cytoskeleton. Collectively, this work demonstrates that actin plays a central role in fungal dimorphism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The multipotential cytokine transforming growth factor-β (TGF-β) is secreted in a latent form. Latency results from the noncovalent association of TGF-β with its processed propeptide dimer, called the latency-associated peptide (LAP); the complex of the two proteins is termed the small latent complex. Disulfide bonding between LAP and latent TGF-β–binding protein (LTBP) produces the most common form of latent TGF-β, the large latent complex. The extracellular matrix (ECM) modulates the activity of TGF-β. LTBP and the LAP propeptides of TGF-β (isoforms 1 and 3), like many ECM proteins, contain the common integrin-binding sequence RGD. To increase our understanding of latent TGF-β function in the ECM, we determined whether latent TGF-β1 interacts with integrins. A549 cells adhered and spread on plastic coated with LAP, small latent complex, and large latent complex but not on LTBP-coated plastic. Adhesion was blocked by an RGD peptide, and cells were unable to attach to a mutant form of recombinant LAP lacking the RGD sequence. Adhesion was also blocked by mAbs to integrin subunits αv and β1. We purified LAP-binding integrins from extracts of A549 cells using LAP bound to Sepharose. αvβ1 eluted with EDTA. After purification in the presence of Mn2+, a small amount of αvβ5 was also detected. A549 cells migrated equally on fibronectin- and LAP-coated surfaces; migration on LAP was αvβ1 dependent. These results establish αvβ1 as a LAP-β1 receptor. Interactions between latent TGF-β and αvβ1 may localize latent TGF-β to the surface of specific cells and may allow the TGF-β1 gene product to initiate signals by both TGF-β receptor and integrin pathways.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The products of the recF, recO, and recR genes are thought to interact and assist RecA in the utilization of single-stranded DNA precomplexed with single-stranded DNA binding protein (Ssb) during synapsis. Using immunoprecipitation, size-exclusion chromatography, and Ssb protein affinity chromatography in the absence of any nucleotide cofactors, we have obtained the following results: (i) RecF interacts with RecO, (ii) RecF interacts with RecR in the presence of RecO to form a complex consisting of RecF, RecO, and RecR (RecF–RecO–RecR); (iii) RecF interacts with Ssb protein in the presence of RecO. These data suggested that RecO mediates the interactions of RecF protein with RecR and with Ssb proteins. Incubation of RecF, RecO, RecR, and Ssb proteins resulted in the formation of RecF–RecO–Ssb complexes; i.e., RecR was excluded. Preincubation of RecF, RecO, and RecR proteins prior to addition of Ssb protein resulted in the formation of complexes consisting of RecF, RecO, RecR, and Ssb proteins. These data suggest that one role of RecF is to stabilize the interaction of RecR with RecO in the presence of Ssb protein. Finally, we found that interactions of RecF with RecO are lost in the presence of ATP. We discuss these results to explain how the RecF–RecO–RecR complex functions as an anti-Ssb factor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

CD26 is a T cell activation antigen known to bind adenosine deaminase and have dipeptidyl peptidase IV activity. Cross-linking of CD26 and CD3 with immobilized mAbs can deliver a costimulatory signal that contributes to T cell activation. Our earlier studies revealed that cross-linking of CD26 induces its internalization, the phosphorylation of a number of proteins involved in the signaling pathway, and subsequent T cell proliferation. Although these findings suggest the importance of internalization in the function of CD26, CD26 has only 6 aa residues in its cytoplasmic region with no known motif for endocytosis. In the present study, we have identified the mannose 6-phosphate/insulin-like growth factor II receptor (M6P/IGFIIR) as a binding protein for CD26 and that mannose 6-phosphate (M6P) residues in the carbohydrate moiety of CD26 are critical for this binding. Activation of peripheral blood T cells results in the mannose 6 phosphorylation of CD26. In addition, the cross-linking of CD26 with an anti-CD26 antibody induces not only capping and internalization of CD26 but also colocalization of CD26 with M6P/IGFIIR. Finally, both internalization of CD26 and the T cell proliferative response induced by CD26-mediated costimulation were inhibited by the addition of M6P, but not by glucose 6-phosphate or mannose 1-phosphate. These results indicate that internalization of CD26 after cross-linking is mediated in part by M6P/IGFIIR and that the interaction between mannose 6-phosphorylated CD26 and M6P/IGFIIR may play an important role in CD26-mediated T cell costimulatory signaling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Host Cell Factor-1 (HCF-1, C1) was first identified as a cellular target for the herpes simplex virus transcriptional activator VP16. Association between HCF and VP16 leads to the assembly of a multiprotein enhancer complex that stimulates viral immediate-early gene transcription. HCF-1 is expressed in all cells and is required for progression through G1 phase of the cell cycle. In addition to VP16, HCF-1 associates with a cellular bZIP protein known as LZIP (or Luman). Both LZIP and VP16 contain a four-amino acid HCF-binding motif, recognized by the N-terminal β-propeller domain of HCF-1. Herein, we show that the N-terminal 92 amino acids of LZIP contain a potent transcriptional activation domain composed of three elements: the HCF-binding motif and two LxxLL motifs. LxxLL motifs are found in a number of transcriptional coactivators and mediate proteinprotein interactions, notably recognition of the nuclear hormone receptors. LZIP is an example of a sequence-specific DNA-binding protein that uses LxxLL motifs within its activation domain to stimulate transcription. The LxxLL motifs are not required for association with the HCF-1 β-propeller and instead interact with other regions in HCF-1 or recruit additional cofactors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

CYR61 is a secreted, cysteine-rich, heparin-binding protein encoded by a growth factor-inducible immediate–early gene. Acting as an extracellular, matrix-associated signaling molecule, CYR61 promotes the adhesion of endothelial cells through interaction with the integrin αVβ3 and augments growth factor-induced DNA synthesis in the same cell type. In this study, we show that purified CYR61 stimulates directed migration of human microvascular endothelial cells in culture through an αVβ3-dependent pathway and induces neovascularization in rat corneas. Both the chemotactic and angiogenic activities of CYR61 can be blocked by specific anti-CYR61 antibodies. Whereas most human tumor-derived cell lines tested express CYR61, the gastric adenocarcinoma cell line RF-1 does not. Expression of the CYR61 cDNA under the regulation of a constitutive promoter in RF-1 cells significantly enhances the tumorigenicity of these cells as measured by growth in immunodeficient mice, resulting in tumors that are larger and more vascularized than those produced by control RF-1 cells. Taken together, these results identify CYR61 as an angiogenic inducer that can promote tumor growth and vascularization; the results also suggest potential roles for CYR61 in physiologic and pathologic neovascularization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We previously isolated 25 temperature-sensitive gsp1 alleles of Saccharomyces cerevisiae Ran homologue, each of which possesses amino acid changes that differ from each other. We report here isolation of three multicopy suppressors—PDE2, NTF2, and a gene designated MOG1—all of which rescued a growth defect of these gsp1 strains. The gsp1 suppression occurred even in the absence of GSP2, another S. cerevisiae GSP1-like gene. Previously, NTF2 was reported to suppress gsp1 but not PDE2. Mog1p, with a calculated molecular mass of 24 kDa, was found to be encoded by the yeast ORF YJR074W. Both MOG1 and NTF2 suppressed a series of gsp1 alleles with similar efficiency, and both suppressed gsp1 even with a single gene dose. Consistent with the high efficiency of gsp1 suppression, Mog1p directly bound to GTP, but not to GDP-Gsp1p. The disruption of MOG1 made yeast temperature-sensitive for growth. Δmog1, which was suppressed by overexpression of NTF2, was found to have a defect in both classic and nonclassic nuclear localization signal-dependent nuclear-protein imports, but not in mRNA export. Thus, Mog1p, which was localized in the nucleus, is a Gsp1p-binding protein involved in nuclear-protein import and that functionally interacts with Ntf2p. Furthermore, the finding that PDE2 suppressed both gsp1 and rna1–1 indicates that the Ran GTPase cycle is regulated by the Ras-cAMP pathway.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

c-Jun N-terminal kinases (JNKs) are potently activated by a number of cellular stimuli. Small GTPases, in particular Rac, are responsible for initiating the activation of the JNK pathways. So far, the signals leading from extracellular stimuli to the activation of Rac have remained elusive. Recent studies have demonstrated that the Src homology 2 (SH2)- and Src homology 3 (SH3)-containing adaptor protein Crk is capable of activating JNK when ectopically expressed. We found here that transient expression of Crk induces JNK activation, and this activation was dependent on both the SH2- and SH3-domains of Crk. Expression of p130Cas (Cas), a major binding protein for the Crk SH2-domain, also induced JNK activation, which was blocked by the SH2-mutant of Crk. JNK activation by Cas and Crk was effectively blocked by a dominant-negative form of Rac, suggesting for a linear pathway from the Cas-Crk-complex to the Rac-JNK activation. Many of the stimuli that activate the Rac-JNK pathway enhance engagement of the Crk SH2-domain. JNK activation by these stimuli, such as epidermal growth factor, integrin ligand binding and v-Src, was efficiently blocked by dominant-negative mutants of Crk. A dominant-negative form of Cas in turn blocked the integrin-, but not epidermal growth factor - nor v-Src-mediated JNK activation. Together, these results demonstrate an important role for Crk in connecting multiple cellular stimuli to the Rac-JNK pathway, and a role for the Cas-Crk complex in integrin-mediated JNK activation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is still a lack of information on the specific characteristics of DNA-binding proteins from hyperthermophiles. Here we report on the product of the gene orf56 from plasmid pRN1 of the acidophilic and thermophilic archaeon Sulfolobus islandicus. orf56 has not been characterised yet but low sequence similarily to several eubacterial plasmid-encoded genes suggests that this 6.5 kDa protein is a sequence-specific DNA-binding protein. The DNA-binding properties of ORF56, expressed in Escherichia coli, have been investigated by EMSA experiments and by fluorescence anisotropy measurements. Recombinant ORF56 binds to double-stranded DNA, specifically to an inverted repeat located within the promoter of orf56. Binding to this site could down-regulate transcription of the orf56 gene and also of the overlapping orf904 gene, encoding the putative initiator protein of plasmid replication. By gel filtration and chemical crosslinking we have shown that ORF56 is a dimeric protein. Stoichiometric fluorescence anisotropy titrations further indicate that ORF56 binds as a tetramer to the inverted repeat of its target binding site. CD spectroscopy points to a significant increase in ordered secondary structure of ORF56 upon binding DNA. ORF56 binds without apparent cooperativity to its target DNA with a dissociation constant in the nanomolar range. Quantitative analysis of binding isotherms performed at various salt concentrations and at different temperatures indicates that approximately seven ions are released upon complex formation and that complex formation is accompanied by a change in heat capacity of –6.2 kJ/mol. Furthermore, recombinant ORF56 proved to be highly thermostable and is able to bind DNA up to 85°C.