969 resultados para Gross-Pitaevskii equation
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We consider the family of singularly nonautonomous plate equation with structural dampingu(tt) + a(t, x)u(t) - Delta u(t) + (-Delta)(2)(u) + lambda u = f(u),in a bounded domain Omega subset of R(n), with Navier boundary conditions. When the nonlinearity f is dissipative we show that this problem is globally well posed in H(0)(2)(Omega) x L(2)(Omega) and has a family of pullback attractors which is upper-semicontinuous under small perturbations of the damping a.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Um método de correção de interferência espectral e de transporte é proposto, e foi aplicado para minimizar interferências por moléculas de PO produzidas em chama ar-acetileno e de transporte causada pela variação da concentração de ácido fosfórico. Átomos de Pb e moléculas de PO absorvem a 217,0005 nm, então Atotal217,0005 nm = A Pb217,0005 nm + A PO217,0005 nm. Monitorando o comprimento de onda alternativo de PO em 217,0458 nm, é possível calcular a contribuição relativa de PO na absorbância total a 217,0005 nm: A Pb217,0005 nm = Atotal217,0005 nm - A PO217,0005 nm = Atotal217,0005 nm - k (A PO217,0458 nm). O fator de correção k é a razão entre os coeficientes angulares de duas curvas analíticas para P obtidas a 217,0005 e 217,0458 nm (k = b217,0005 nm/b217,0458 nm). Fixando-se a taxa de aspiração da amostra em 5,0 ml min-1, e integrando-se a absorbância no comprimento de onda a 3 pixels, curvas analíticas para Pb (0,1 - 1,0 mg L-1) foram obtidas com coeficientes de correlação típicos > 0,9990. As correlações lineares entre absorbância e concentração de P nos comprimentos de onda 217,0005 e 217,0458 foram > 0,998. O limite de detecção de Pb foi 10 µg L-1. O método de correção proposto forneceu desvios padrão relativos (n=12) de 2,0 a 6,0%, ligeiramente menores que os obtidos sem correção (1,4-4,3%). As recuperações de Pb adicionado às amostras de ácido fosfórico variaram de 97,5 a 100% (com correção pelo método proposto) e de 105 a 230% (sem correção).
Resumo:
Foi descrita a distribuição do arco aórtico de oito animais da espécie Agouti paca, sendo duas fêmeas adultas e seis filhotes jovens (3 machos e 3 fêmeas) que foram obtidos no Setor de Animais Silvestres da Faculdade de Ciências Agrárias e Veterinárias -- Campus de Jaboticabal. Após morte natural, seus vasos arteriais foram injetados com Neoprene latex 650 (Du Pont do Brasil S.A.) coloridos e colocados em uma solução de formalina a 10%. Depois de dissecados, notou-se que o arco aórtico desses animais emite a artéria subclávia e o tronco braquiocefálico. Este último dá origem à artéria carótida comum esquerda e a um tronco, do qual surgem a artéria carótida comum direita e a artéria subclávia direita. Estas emitem, em cada antímero, a artéria vertebral, a artéria tronco costocervical, a artéria cervical superficial, a artéria axilar e a artéria torácica interna. em apenas um animal a artéria carótida comum esquerda apresenta-se na forma de um sifão, logo após sua origem na artéria subclávia direita. Nos demais animais, a artéria carótida comum esquerda apresenta um trajeto retilíneo.
Resumo:
The analytical solution of the Poisson-Boltzmann equation in an electrolyte with four ionic species (2:2:1:1), in the presence of a charged planar membrane or surface is presented. The function describing the mean electrical potential provides a convenient description that helps the understanding of electrical processes of biological interest.
Resumo:
In this paper, we prove the exponential decay as time goes to infinity of regular solutions of the problem for the Kirchhoff wave equation with nonlocal condition and weak dampingu(tt) - M (\\delU\\(2)(2)) Deltau + integral(0)(t) g(t - s)Deltau(.,s) ds + alphau(t) = 0, in (Q) over cap,where (Q) over cap is a noncylindrical domain of Rn+1 (n greater than or equal to 1) with the lateral boundary (&USigma;) over cap and alpha is a positive constant. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
We report the exact fundamental solution for Kramers equation associated to a Brownian gas of charged particles, under the influence of homogeneous (spatially uniform) otherwise arbitrary, external mechanical, electrical and magnetic fields. Some applications are presented, namely the hydrothermodynamical picture for Brownian motion in the long-time regime. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Various Green functions of the Dirac equation with a magnetic-solenoid field (the superposition of the Aharonov-Bohm field and a collinear uniform magnetic field) are constructed and studied. The problem is considered in 2+1 and 3+1 dimensions for the natural extension of the Dirac operator (the extension obtained from the solenoid regularization). Representations of the Green functions as proper time integrals are derived. The nonrelativistic limit is considered. For the sake of completeness the Green functions of the Klein-Gordon particles are constructed as well. (C) 2004 American Institute of Physics.
Resumo:
The Poisson-Boltzmann equation (PBE), with specific ion-surface interactions and a cell model, was used to calculate the electrostatic properties of aqueous solutions containing vesicles of ionic amphiphiles. Vesicles are assumed to be water- and ion-permeable hollow spheres and specific ion adsorption at the surfaces was calculated using a Volmer isotherm. We solved the PBE numerically for a range of amphiphile and salt concentrations (up to 0.1 M) and calculated co-ion and counterion distributions in the inside and outside of vesicles as well as the fields and electrical potentials. The calculations yield results that are consistent with measured values for vesicles of synthetic amphiphiles.
Resumo:
A relativistic treatment of the deuteron and its observables based on a two-body Dirac (Breit) equation, with phenomenological interactions, associated to one-boson exchanges with cutoff masses, is presented. The 16-component wave function for the deuteron (J(pi) = 1+) solution contains four independent radial functions which obey a system of four coupled differential equations of first order. This radial system is numerically integrated, from infinity to the origin, by fixing the value of the deuteron binding energy and using appropriate boundary conditions at infinity. Specific examples of mixtures containing scalar, pseudoscalar and vector like terms are discussed in some detail and several observables of the deuteron are calculated. Our treatment differs from more conventional ones in that nonrelativistic reductions of the order c-2 are not used.