910 resultados para Greenhouse gas fluxes
Resumo:
Submarine gas hydrates are a major global reservoir of the potent greenhouse gas methane. Since current assessments of worldwide hydrate-bound carbon vary by one order of magnitude, new technical efforts are required for improved and accurate hydrate quantifications. Here we present hydrate abundances determined for surface sediments at the high-flux Batumi seep area in the southeastern Black Sea at 840 m water depth using state-of-the art autoclave technology. Pressure sediment cores of up to 2.65 m in length were recovered with an autoclave piston corer backed by conventional gravity cores. Quantitative core degassing yielded volumetric gas/bulk sediment ratios of up to 20.3 proving hydrate presence. The cores represented late glacial to Holocene hemipelagic sediments with the shallowest hydrates found at 90 cmbsf. Calculated methane concentrations in the different cores surpassed methane equilibrium concentrations in the two lowermost lithological Black Sea units sampled. The results indicated hydrate fractions of 5.2% of pore volume in the sapropelic Unit 2 and mean values of 21% pore volume in the lacustrine Unit 3. We calculate that the studied area of ~ 0.5 km**2 currently contains about 11.3 kt of methane bound in shallow hydrates. Episodic detachment and rafting of such hydrates is suggested by a rugged seafloor topography along with variable thicknesses in lithologies. We propose that sealing by hydrate precipitation in coarse-grained deposits and gas accumulation beneath induces detachment of hydrate/sediment chunks. Floating hydrates will rapidly transport methane into shallower waters and potentially to the sea-atmosphere boundary. In contrast, persistent in situ dissociation of shallow hydrates appears unlikely in the near future as deep water warming by about 1.6 °C and/or decrease in hydrostatic pressure corresponding to a sea level drop of about 130 m would be required. Because hydrate detachment should be primarily controlled by internal factors in this area and in similar hydrated settings, it serves as source of methane in shallow waters and the atmosphere which is mainly decoupled from external forcing.
Resumo:
The microbial oxidation of methane controls the emission of the greenhouse gas methane from the ocean floor. However, some seabed structures such as mud volcanoes have leaky microbial methane filters and can be important sources of methane. We investigated the disturbance and recovery of a methanotrophic mud volcano microbiome (Håkon Mosby mud volcano, 1250 m water depth), to assess time scales of community succession and function in the natural deep-sea environment. We analyzed 10 surface and 5 subsurface sediment samples across HMMV mud flows from most recently discharged subsurface muds towards old consolidated muds as well as one reference site (REF) located approximately 0.5 km outside of the HMMV. Surface samples were obtained in 2003, 2009 and 2010. The surface of the new mud flows at the geographical center was sampled in 2009 and 2010. Around 100 m south of the center, we sampled more consolidated aged muds in 2003 and 2010. Old mud flows were sampled around 300 m southeast and 100 m north of the geographical center in 2003, 2009 and 2010. Surface sediment samples (0-20 cm) were recovered either by TV-guided Multicorer or by push cores using the remotely operated vehicle Quest (Marum, University Bremen). Subsurface sediments of all zones (>2 m below sea floor) were obtained in 2003 by gravity corer. After recovery, sediments were immediately subsampled in a refrigerated container (0°C) and further processed for biogeochemical analyses or preserved at -20°C for later DNA analyses. Our study show that freshly erupted muds hosted heterotrophic deep subsurface communities, which were replaced by surface communities within a few years of exposure. Aerobic methanotrophy was established at the top surface layer within less than a year, followed by anaerobic methanotrophy, sulfate reduction and finally thiotrophy. Our data indicate that it takes decades in cold environments before efficient methanotrophic communities establish to control methane emission. The observed succession provides insights to the response time of complex deep-sea communities to seafloor disturbances.
Resumo:
Executive Summary: Carbon dioxide capture and storage (CCS) is one option for mitigating atmospheric emissions of carbon dioxide and thereby contributes in actions for stabilization of atmospheric greenhouse gas concentrations. The Bellona Foundation is striving to achieve wide implementation of carbon dioxide (CO2) capture and storage both in Norway and internationally. Bellona considers CCS as the only viable large scale option to close the gap between energy production and demand in an environmentally sound way, thereby ensuring that climate changes and acidification of the oceans due to increased CO2 concentrations in the atmosphere will be stabilised. ff
Resumo:
Estimates show that fossil fuel subsidies average USD 400–600 billion annually worldwide while renewable energy (RE) subsidies amounted to USD 66 billion in 2010 and are predicted to rise to USD 250 billion annually by 2035. Domestic political rationales for energy subsidies include promoting innovation, job creation and economic growth, energy security, and independence. Energy subsidies may also serve social and environmental goals. Whether and to what extent subsidies are effective to achieve these goals or instead lead to market distortions is a matter of much debate and the trade effects of energy subsidies are complex. This paper offers an overview of the types of energy subsidies that are used in the conventional and renewable energy sectors, and their relationship with climate change, in particular greenhouse gas emissions. While the WTO’s Agreement on Subsidies and Countervailing Measures (ASCM) is mostly concerned with harm to competitors, this paper considers the extent to which the Agreement could also discipline subsidies that cause harm to the environment as a global common. Beyond the existing legal framework, this paper surveys a number of alternatives for improving the ability of subsidies disciplines to internalize climate change costs of energy production and consumption. One option is a new multilateral agreement on subsidies or trade remedies (with an appropriate carve-out in the WTO regime to allow for it if such an agreement is concluded outside it). Alternatively, climate change-related subsidies could be included as part of another multilateral regime or as part of regional agreements. A third approach would be to incorporate rules on energy subsidies in sectorial agreements, including a Sustainable Energy Trade Agreement such as has been proposed in other ICTSD studies.
Resumo:
Koopman et al. (2014) developed a method to consistently decompose gross exports in value-added terms that accommodate infinite repercussions of international and inter-sector transactions. This provides a better understanding of trade in value added in global value chains than does the conventional gross exports method, which is affected by double-counting problems. However, the new framework is based on monetary input--output (IO) tables and cannot distinguish prices from quantities; thus, it is unable to consider financial adjustments through the exchange market. In this paper, we propose a framework based on a physical IO system, characterized by its linear programming equivalent that can clarify the various complexities relevant to the existing indicators and is proved to be consistent with Koopman's results when the physical decompositions are evaluated in monetary terms. While international monetary tables are typically described in current U.S. dollars, the physical framework can elucidate the impact of price adjustments through the exchange market. An iterative procedure to calculate the exchange rates is proposed, and we also show that the physical framework is also convenient for considering indicators associated with greenhouse gas (GHG) emissions.
Resumo:
Developing countries are experiencing unprecedented levels of economic growth. As a result, they will be responsible for most of the future growth in energy demand and greenhouse gas (GHG) emissions. Curbing GHG emissions in developing countries has become one of the cornerstones of a future international agreement under the United Nations Framework Convention for Climate Change (UNFCCC). However, setting caps for developing countries’ GHG emissions has encountered strong resistance in the current round of negotiations. Continued economic growth that allows poverty eradication is still the main priority for most developing countries, and caps are perceived as a constraint to future growth prospects. The development, transfer and use of low-carbon technologies have more positive connotations, and are seen as the potential path towards low-carbon development. So far, the success of the UNFCCC process in improving the levels of technology transfer (TT) to developing countries has been limited. This thesis analyses the causes for such limited success and seeks to improve on the understanding about what constitutes TT in the field of climate change, establish the factors that enable them in developing countries and determine which policies could be implemented to reinforce these factors. Despite the wide recognition of the importance of technology and knowledge transfer to developing countries in the climate change mitigation policy agenda, this issue has not received sufficient attention in academic research. Current definitions of climate change TT barely take into account the perspective of actors involved in actual climate change TT activities, while respective measurements do not bear in mind the diversity of channels through which these happen and the outputs and effects that they convey. Furthermore, the enabling factors for TT in non-BRIC (Brazil, Russia, India, China) developing countries have been seldom investigated, and policy recommendations to improve the level and quality of TTs to developing countries have not been adapted to the specific needs of highly heterogeneous countries, commonly denominated as “developing countries”. This thesis contributes to enriching the climate change TT debate from the perspective of a smaller emerging economy (Chile) and by undertaking a quantitative analysis of enabling factors for TT in a large sample of developing countries. Two methodological approaches are used to study climate change TT: comparative case study analysis and quantitative analysis. Comparative case studies analyse TT processes in ten cases based in Chile, all of which share the same economic, technological and policy frameworks, thus enabling us to draw conclusions on the enabling factors and obstacles operating in TT processes. The quantitative analysis uses three methodologies – principal component analysis, multiple regression analysis and cluster analysis – to assess the performance of developing countries in a number of enabling factors and the relationship between these factors and indicators of TT, as well as to create groups of developing countries with similar performances. The findings of this thesis are structured to provide responses to four main research questions: What constitutes technology transfer and how does it happen? Is it possible to measure technology transfer, and what are the main challenges in doing so? Which factors enable climate change technology transfer to developing countries? And how do different developing countries perform in these enabling factors, and how can differentiated policy priorities be defined accordingly? vi Resumen Los paises en desarrollo estan experimentando niveles de crecimiento economico sin precedentes. Como consecuencia, se espera que sean responsables de la mayor parte del futuro crecimiento global en demanda energetica y emisiones de Gases de Efecto de Invernadero (GEI). Reducir las emisiones de GEI en los paises en desarrollo es por tanto uno de los pilares de un futuro acuerdo internacional en el marco de la Convencion Marco de las Naciones Unidas para el Cambio Climatico (UNFCCC). La posibilidad de compromisos vinculantes de reduccion de emisiones de GEI ha sido rechazada por los paises en desarrollo, que perciben estos limites como frenos a su desarrollo economico y a su prioridad principal de erradicacion de la pobreza. El desarrollo, transferencia y uso de tecnologias bajas en carbono tiene connotaciones mas positivas y se percibe como la via hacia un crecimiento bajo en carbono. Hasta el momento, la UNFCCC ha tenido un exito limitado en la promocion de transferencias de tecnologia (TT) a paises en desarrollo. Esta tesis analiza las causas de este resultado y busca mejorar la comprension sobre que constituye transferencia de tecnologia en el area de cambio climatico, cuales son los factores que la facilitan en paises en desarrollo y que politicas podrian implementarse para reforzar dichos factores. A pesar del extendido reconocimiento sobre la importancia de la transferencia de tecnologia a paises en desarrollo en la agenda politica de cambio climatico, esta cuestion no ha sido suficientemente atendida por la investigacion existente. Las definiciones actuales de transferencia de tecnologia relacionada con la mitigacion del cambio climatico no tienen en cuenta la diversidad de canales por las que se manifiestan o los efectos que consiguen. Los factores facilitadores de TT en paises en desarrollo no BRIC (Brasil, Rusia, India y China) apenas han sido investigados, y las recomendaciones politicas para aumentar el nivel y la calidad de la TT no se han adaptado a las necesidades especificas de paises muy heterogeneos aglutinados bajo el denominado grupo de "paises en desarrollo". Esta tesis contribuye a enriquecer el debate sobre la TT de cambio climatico con la perspectiva de una economia emergente de pequeno tamano (Chile) y el analisis cuantitativo de factores que facilitan la TT en una amplia muestra de paises en desarrollo. Se utilizan dos metodologias para el estudio de la TT a paises en desarrollo: analisis comparativo de casos de estudio y analisis cuantitativo basado en metodos multivariantes. Los casos de estudio analizan procesos de TT en diez casos basados en Chile, para derivar conclusiones sobre los factores que facilitan u obstaculizan el proceso de transferencia. El analisis cuantitativo multivariante utiliza tres metodologias: regresion multiple, analisis de componentes principales y analisis cluster. Con dichas metodologias se busca analizar el posicionamiento de diversos paises en cuanto a factores que facilitan la TT; las relaciones entre dichos factores e indicadores de transferencia tecnologica; y crear grupos de paises con caracteristicas similares que podrian beneficiarse de politicas similares para la promocion de la transferencia de tecnologia. Los resultados de la tesis se estructuran en torno a cuatro preguntas de investigacion: .Que es la transferencia de tecnologia y como ocurre?; .Es posible medir la transferencia de tecnologias de bajo carbono?; .Que factores facilitan la transferencia de tecnologias de bajo carbono a paises en desarrollo? y .Como se puede agrupar a los paises en desarrollo en funcion de sus necesidades politicas para la promocion de la transferencia de tecnologias de bajo carbono?
Resumo:
Geological storage of CO2 is nowadays internationally considered as the most effective method for greenhouse gas emission mitigation, in order to minimize its effects on the global climatology. One of the main options is to store the CO2 in deep saline aquifers at more than 800 m depth, because it achieves its supercritical state. Among the most important aspects concerning the performance assessment of a deep CO2 geological repository is the evaluation of the CO2 leakage rate from the chosen storage geological formation. Therefore, it is absolutely necessary to increase the knowledge on the interaction among CO2, storage and sealing formations, as well as on the flow paths for CO2 and the physico-mechanical resistance of the sealing formation. Furthermore, the quantification of the CO2 leakage rate is essential to evaluate its effects on the environment. One way to achieve this objective is to study of CO2 leakage on natural analogue systems, because they can provide useful information about the natural performance of the CO2, which can be applied to an artificial CO2 geological storage. This work is focused on the retention capacity of the cap-rock by measuring the diffuse soil CO2 flux in a site selected based on: i) the presence of a natural and deep CO2 accumulation; ii) its structural geological characteristics; and iii) the nature of the cap-rocks. This site is located in the so-called Mazarrón-Gañuelas Tertiary Basin, in the Guadalentin Valley, province of Murcia (Spain) Therefore the main objective of this investigation has been to detect the possible leakages of CO2 from a deep saline aquifer to the surface in order to understand the capability of this area as a natural analogue for Carbon Capture and Sequestration (CCS). The results obtained allow to conclude that the geological sealing formation of the basin seems to be appropriate to avoid CO2 leakages from the storage formation.
Resumo:
Geological storage of CO2 is nowadays internationally considered as the most effective method for greenhouse gas emission mitigation, in order to minimize its effects on the global climatology. One of the main options is to store CO2 in deep saline aquifers at more than 800m depth, because it reaches its supercritical state. Study of the CO2 natural accumulations as natural analogues of an artificial CO2 storage is very useful in order to understand the CO2 long term behaviour and thus to predict its possible impact on the surficial environment and life. Therefore the main objective of this work is to detect the affection of the CO2 leakages from a deep saline aquifer on the shallow aquifers, all of them located in the Gañuelas-Mazarrón Tertiary basin (Province of Murcia, Spain). This CO2 storage and leakage natural system can be analogous to an artificial CO2 storage with leakage phenomena. In order to reach these objectives, groundwaters from different aquifers in the site have been sampled and analysed for major elements, free and dissolved gases and stable isotopes, particularly ∂ 13 C and 3 He/ 4 He. The results obtained allow to conclude that this natural system is an interesting example of natural analogue for an artificial CO2 storage affected by leakage processes because the shallow fresh aquifers in the site are polluted by CO2 from the deep saline aquifer as a consequence of an intensive over-exploitation of these freshwater aquifers
Resumo:
Fundación Ciudad de la Energía (CIUDEN) is carrying out a project of geological storage of CO2, where CO2 injection tests are planned in saline aquifers at a depth of 1500 m for scientific objectives and project demonstration. Before any CO2 is stored, it is necessary to determine the baseline flux of CO2 in order to detect potential leakage during injection and post-injection monitoring. In November 2009 diffuse flux measurements of CO2 using an accumulationchamber were made in the area selected by CIUDEN for geological storage, located in Hontomin province of Burgos (Spain). This paper presents the tests carried out in order to establish the optimum sampling methodology and the geostatistical analyses performed to determine the range, with which future field campaigns will be planned.
Resumo:
Climate change conference was hold in Copenhagen in 2009, global warming became the worldwide focus once again. China as a developing country has paid more attention for this environmental problem. In China, a large part of carbon dioxide is emitted to the atmosphere from combustion of fossil fuels in power plants. How to control emission of the greenhouse gas into atmosphere is becoming an urgent concern. Among numerous methods, CO2 capture is the hope to limit the amount of CO2 emitted into the air. The well-established method for CO2 capture is to remove CO2 by absorption into solutions in conventional equipment. Absorbents used for CO2 and H2S capture are important choice for CO2 capture technology. It is related to the cost and efficiency of plant directly and is essential to investigate the proposed CO2 and H2S absorbents.
Resumo:
During the last decade, wind energy has been the fastest growing renewable source of energy worldwide. Limited sources of fossil fuel in addition to the negative effects of greenhouse gas emissions on the environment have led many countries to support development of renewable energies such as wind energy. Spain as the fourth biggest producer of wind energy plays an important global role in wind industry. In this paper, some important factors in the rapid growth of wind energy in Spain such as policy design, industry and technology, economic environment and social acceptance have been studied. The objective of this study is to introduce a model based on the successful development of wind energy in Spain which can be implemented by other countries
Resumo:
streets in local residential areas in large cities, real traffic tests for pollutant emissions and fuel consumption have been carried out in Madrid city centre. Emission concentration and car activity were simultaneously measured by a Portable Emissions Measurement System. Real life tests carried out at different times and on different days were performed with a turbo-diesel engine light vehicle equipped with an oxidizer catalyst and using different driving styles with a previously trained driver. The results show that by reducing the speed limit from 50 km h-1 to 30 km h-1, using a normal driving style, the time taken for a given trip does not increase, but fuel consumption and NOx, CO and PM emissions are clearly reduced. Therefore, the main conclusion of this work is that reducing the speed limit in some narrow streets in residential and commercial areas or in a city not only increases pedestrian safety, but also contributes to reducing the environmental impact of motor vehicles and reducing fuel consumption. In addition, there is also a reduction in the greenhouse gas emissions resulting from the combustion of the fuel.
Resumo:
The EU-CargoXpress project suggests the usage of sustainable energies to reduce the fuel consumption. The updated concept consists of hoisting the superstructure and using it as a sail together with the conventional propulsion. This paper presents the study of the sail performance by means of a computational analysis and wind tunnel tests. Moreover, a research of the energy saving in different operational areas has been conducted. It is concluded that there is a significant energy saving by using the superstructure as a sail which leads to a reduction of fossil fuel consumption and consequently, a reduction of greenhouse gas emissions.
Resumo:
Greenhouse gas emission reduction is the pillar of the Kyoto Protocol and one of the main goals of the European Union (UE) energy policy. National reduction targets for EU member states and an overall target for the EU-15 (8%) were set by the Kyoto Protocol. This reduction target is based on emissions in the reference year (1990) and must be reached by 2012. EU energy policy does not set any national targets, only an overall reduction target of 20% by 2020. This paper transfers global greenhouse gas emission reduction targets in both these documents to the transport sector and specifically to CO2 emissions. It proposes a nonlinear distribution method with objective, dynamic targets for reducing CO2 emissions in the transport sector, according to the context and characteristics of each geographical area. First, we analyse CO2 emissions from transport in the reference year (1990) and their evolution from 1990 to 2007. We then propose a nonlinear methodology for distributing dynamic CO2 emission reduction targets. We have applied the proposed distribution function for 2012 and 2020 at two territorial levels (EU member states and Spanish autonomous regions). The weighted distribution is based on per capita CO2 emissions and CO2 emissions per gross domestic product. Finally, we show the weighted targets found for each EU member state and each Spanish autonomous region, compare them with the real achievements to date, and forecast the situation for the years the Kyoto and EU goals are to be met. The results underline the need for ?weighted? decentralised decisions to be made at different territorial levels with a view to achieving a common goal, so relative convergence of all the geographical areas is reached over time. Copyright © 2011 John Wiley & Sons, Ltd.
Resumo:
There is strong evidence to indicate that carbon dioxide and other greenhouse gases are accumulating at unprecedented concentrations in out atmosphere contributing to global climate change. Evidence is equally strong that human activities, mainly the burning of fossil fuels, are driving force in this process (IPCC 2007). While different industries contribute varying amounts to total anthropogenic greenhouse gases, it is incumbent upon each to understand its contribution and search for sensible ways to reduce overall greenhouse gas production. The aim of this paper is the development of a methodology to determine the amount of CO2 emissions of a highway, allowing providing solutions that can improve the energy footprint and reduce its emissions