934 resultados para Graphical passwords


Relevância:

10.00% 10.00%

Publicador:

Resumo:

One of the most undervalued problems by smartphone users is the security of data on their mobile devices. Today smartphones and tablets are used to send messages and photos and especially to stay connected with social networks, forums and other platforms. These devices contain a lot of private information like passwords, phone numbers, private photos, emails, etc. and an attacker may choose to steal or destroy this information. The main topic of this thesis is the security of the applications present on the most popular stores (App Store for iOS and Play Store for Android) and of their mechanisms for the management of security. The analysis is focused on how the architecture of the two systems protects users from threats and highlights the real presence of malware and spyware in their respective application stores. The work described in subsequent chapters explains the study of the behavior of 50 Android applications and 50 iOS applications performed using network analysis software. Furthermore, this thesis presents some statistics about malware and spyware present on the respective stores and the permissions they require. At the end the reader will be able to understand how to recognize malicious applications and which of the two systems is more suitable for him. This is how this thesis is structured. The first chapter introduces the security mechanisms of the Android and iOS platform architectures and the security mechanisms of their respective application stores. The Second chapter explains the work done, what, why and how we have chosen the tools needed to complete our analysis. The third chapter discusses about the execution of tests, the protocol followed and the approach to assess the “level of danger” of each application that has been checked. The fourth chapter explains the results of the tests and introduces some statistics on the presence of malicious applications on Play Store and App Store. The fifth chapter is devoted to the study of the users, what they think about and how they might avoid malicious applications. The sixth chapter seeks to establish, following our methodology, what application store is safer. In the end, the seventh chapter concludes the thesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Analyzing and modeling relationships between the structure of chemical compounds, their physico-chemical properties, and biological or toxic effects in chemical datasets is a challenging task for scientific researchers in the field of cheminformatics. Therefore, (Q)SAR model validation is essential to ensure future model predictivity on unseen compounds. Proper validation is also one of the requirements of regulatory authorities in order to approve its use in real-world scenarios as an alternative testing method. However, at the same time, the question of how to validate a (Q)SAR model is still under discussion. In this work, we empirically compare a k-fold cross-validation with external test set validation. The introduced workflow allows to apply the built and validated models to large amounts of unseen data, and to compare the performance of the different validation approaches. Our experimental results indicate that cross-validation produces (Q)SAR models with higher predictivity than external test set validation and reduces the variance of the results. Statistical validation is important to evaluate the performance of (Q)SAR models, but does not support the user in better understanding the properties of the model or the underlying correlations. We present the 3D molecular viewer CheS-Mapper (Chemical Space Mapper) that arranges compounds in 3D space, such that their spatial proximity reflects their similarity. The user can indirectly determine similarity, by selecting which features to employ in the process. The tool can use and calculate different kinds of features, like structural fragments as well as quantitative chemical descriptors. Comprehensive functionalities including clustering, alignment of compounds according to their 3D structure, and feature highlighting aid the chemist to better understand patterns and regularities and relate the observations to established scientific knowledge. Even though visualization tools for analyzing (Q)SAR information in small molecule datasets exist, integrated visualization methods that allows for the investigation of model validation results are still lacking. We propose visual validation, as an approach for the graphical inspection of (Q)SAR model validation results. New functionalities in CheS-Mapper 2.0 facilitate the analysis of (Q)SAR information and allow the visual validation of (Q)SAR models. The tool enables the comparison of model predictions to the actual activity in feature space. Our approach reveals if the endpoint is modeled too specific or too generic and highlights common properties of misclassified compounds. Moreover, the researcher can use CheS-Mapper to inspect how the (Q)SAR model predicts activity cliffs. The CheS-Mapper software is freely available at http://ches-mapper.org.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Il presente lavoro ha come obiettivo la descrizione dello studio del degassamento diffuso di CO2 (acquisizione dei dati e loro trattazione) effettuato nell'area vulcanica dei Campi Flegrei (NA), nello specifico nell'area della Solfatara di Pozzuoli. Questo infatti rappresenta attualmente il punto di massimo rilascio di fluidi ed energia dell'intero Distretto Vulcanico Flegreo attraverso attività quali fumarole e degassamento diffuso dal suolo, nonché deformazioni del terreno (bradisismo). Tramite l'acquisizione dei valori di flusso diffuso e delle temperature dei primi 10 cm di suolo, attraverso una trattazione dei dati statistica e geostatistica, è stato possibile distinguere e caratterizzare le sorgenti di CO2 (biologica o vulcanica), la realizzazione di sviluppo di mappe di probabilità e di flusso medio e la quantificazione dell'output totale giornaliero di CO2. Il lavoro è stato suddiviso in due fasi principali: 1. La prima fase ha riguardato l'acquisizione dei dati sul campo nei giorni 19 e 20 marzo 2015, tramite l'utilizzo di una camera d'accumulo ed un termometro munito di sonda, in 434 punti all'interno del cratere della Solfatara e nelle aree circostanti. 2. Nella seconda fase sono stati elaborati i dati, utilizzando il metodo statistico GSA (Graphical Statistic Approach) ed il metodo geostatistico della simulazione sequenziale Gaussiana (sGs). Tramite il GSA è stato possibile ripartire i dati in popolazioni e definire una media (con relativa varianza) per ognuna di esse. Con la sGs è stato possibile trattare i dati, considerando la loro distribuzione spaziale, per simulare valori per le aree prive di misurazioni; ciò ha permesso di generare delle mappe che mostrassero l'andamento dei flussi e la geometria della struttura del degassamento diffuso (Diffuse Degassing Structure, DDS; Chiodini et al., 2001). Infine i dati ottenuti sono stati confrontati con i risultati di precedenti studi e si è messo in relazione la geometria e l'intensità di degassamento con la geologia strutturale dell'area flegrea indagata.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An interdisciplinary European group of clinical experts in the field of movement disorders and experienced Botulinum toxin users has updated the consensus for the use of Botulinum toxin in the treatment of children with cerebral palsy (CP). A problem-orientated approach was used focussing on both published and practice-based evidence. In part I of the consensus the authors have tabulated the supporting evidence to produce a concise but comprehensive information base, pooling data and experience from 36 institutions in 9 European countries which involves more than 10,000 patients and over 45,000 treatment sessions during a period of more than 280 treatment years. In part II of the consensus the Gross Motor Function Measure (GMFM) and Gross Motor Function Classification System (GMFCS) based Motor Development Curves have been expanded to provide a graphical framework on how to treat the motor disorders in children with CP. This graph is named "CP(Graph) Treatment Modalities - Gross Motor Function" and is intended to facilitate communication between parents, therapists and medical doctors concerning (1) achievable motor function, (2) realistic goal-setting and (3) treatment perspectives for children with CP. The updated European consensus 2009 summarises the current understanding regarding an integrated, multidisciplinary treatment approach using Botulinum toxin for the treatment of children with CP.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE: Tumor stage and nuclear grade are the most important prognostic parameters of clear cell renal cell carcinoma (ccRCC). The progression risk of ccRCC remains difficult to predict particularly for tumors with organ-confined stage and intermediate differentiation grade. Elucidating molecular pathways deregulated in ccRCC may point to novel prognostic parameters that facilitate planning of therapeutic approaches. EXPERIMENTAL DESIGN: Using tissue microarrays, expression patterns of 15 different proteins were evaluated in over 800 ccRCC patients to analyze pathways reported to be physiologically controlled by the tumor suppressors von Hippel-Lindau protein and phosphatase and tensin homologue (PTEN). Tumor staging and grading were improved by performing variable selection using Cox regression and a recursive bootstrap elimination scheme. RESULTS: Patients with pT2 and pT3 tumors that were p27 and CAIX positive had a better outcome than those with all remaining marker combinations. A prolonged survival among patients with intermediate grade (grade 2) correlated with both nuclear p27 and cytoplasmic PTEN expression, as well as with inactive, nonphosphorylated ribosomal protein S6. By applying graphical log-linear modeling for over 700 ccRCC for which the molecular parameters were available, only a weak conditional dependence existed between the expression of p27, PTEN, CAIX, and p-S6, suggesting that the dysregulation of several independent pathways are crucial for tumor progression. CONCLUSIONS: The use of recursive bootstrap elimination, as well as graphical log-linear modeling for comprehensive tissue microarray (TMA) data analysis allows the unraveling of complex molecular contexts and may improve predictive evaluations for patients with advanced renal cancer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Robust and accurate identification of intervertebral discs from low resolution, sparse MRI scans is essential for the automated scan planning of the MRI spine scan. This paper presents a graphical model based solution for the detection of both the positions and orientations of intervertebral discs from low resolution, sparse MRI scans. Compared with the existing graphical model based methods, the proposed method does not need a training process using training data and it also has the capability to automatically determine the number of vertebrae visible in the image. Experiments on 25 low resolution, sparse spine MRI data sets verified its performance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neurally adjusted ventilatory assist (NAVA) delivers airway pressure (P(aw)) in proportion to the electrical activity of the diaphragm (EAdi) using an adjustable proportionality constant (NAVA level, cm·H(2)O/μV). During systematic increases in the NAVA level, feedback-controlled down-regulation of the EAdi results in a characteristic two-phased response in P(aw) and tidal volume (Vt). The transition from the 1st to the 2nd response phase allows identification of adequate unloading of the respiratory muscles with NAVA (NAVA(AL)). We aimed to develop and validate a mathematical algorithm to identify NAVA(AL). P(aw), Vt, and EAdi were recorded while systematically increasing the NAVA level in 19 adult patients. In a multistep approach, inspiratory P(aw) peaks were first identified by dividing the EAdi into inspiratory portions using Gaussian mixture modeling. Two polynomials were then fitted onto the curves of both P(aw) peaks and Vt. The beginning of the P(aw) and Vt plateaus, and thus NAVA(AL), was identified at the minimum of squared polynomial derivative and polynomial fitting errors. A graphical user interface was developed in the Matlab computing environment. Median NAVA(AL) visually estimated by 18 independent physicians was 2.7 (range 0.4 to 5.8) cm·H(2)O/μV and identified by our model was 2.6 (range 0.6 to 5.0) cm·H(2)O/μV. NAVA(AL) identified by our model was below the range of visually estimated NAVA(AL) in two instances and was above in one instance. We conclude that our model identifies NAVA(AL) in most instances with acceptable accuracy for application in clinical routine and research.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Several studies suggested an association between Helicobacter pylori infection and colorectal carcinoma or adenoma risk. However, different authors reported quite varying estimates. We carried out a systematic review and meta-analysis of published studies investigating this association and paid special attention to the possibility of publication bias and sources of heterogeneity between studies. Materials and METHODS: An extensive literature search and cross-referencing were performed to identify all published studies. Summary estimates were obtained using random-effects models. The presence of possible publication bias was assessed using different statistical approaches. RESULTS: In a meta-analysis of the 11 identified human studies, published between 1991 and 2002, a summary odds ratio of 1.4 (95% CI, 1.1-1.8) was estimated for the association between H. pylori infection and colorectal cancer risk. The graphical funnel plot appeared asymmetrical, but the formal statistical evaluations did not provide strong evidence of publication bias. The proportion of variation of study results because of heterogeneity was small (36.5%). CONCLUSIONS: The results of our meta-analysis are consistent with a possible small increase in risk of colorectal cancer because of H. pylori infection. However, the possibility of some publication bias cannot be ruled out, although it could not be statistically confirmed. Larger, better designed and better controlled studies are needed to clarify the situation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Despite the widespread popularity of linear models for correlated outcomes (e.g. linear mixed modesl and time series models), distribution diagnostic methodology remains relatively underdeveloped in this context. In this paper we present an easy-to-implement approach that lends itself to graphical displays of model fit. Our approach involves multiplying the estimated marginal residual vector by the Cholesky decomposition of the inverse of the estimated marginal variance matrix. Linear functions or the resulting "rotated" residuals are used to construct an empirical cumulative distribution function (ECDF), whose stochastic limit is characterized. We describe a resampling technique that serves as a computationally efficient parametric bootstrap for generating representatives of the stochastic limit of the ECDF. Through functionals, such representatives are used to construct global tests for the hypothesis of normal margional errors. In addition, we demonstrate that the ECDF of the predicted random effects, as described by Lange and Ryan (1989), can be formulated as a special case of our approach. Thus, our method supports both omnibus and directed tests. Our method works well in a variety of circumstances, including models having independent units of sampling (clustered data) and models for which all observations are correlated (e.g., a single time series).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: The recent development of semi-automated techniques for staining and analyzing flow cytometry samples has presented new challenges. Quality control and quality assessment are critical when developing new high throughput technologies and their associated information services. Our experience suggests that significant bottlenecks remain in the development of high throughput flow cytometry methods for data analysis and display. Especially, data quality control and quality assessment are crucial steps in processing and analyzing high throughput flow cytometry data. Methods: We propose a variety of graphical exploratory data analytic tools for exploring ungated flow cytometry data. We have implemented a number of specialized functions and methods in the Bioconductor package rflowcyt. We demonstrate the use of these approaches by investigating two independent sets of high throughput flow cytometry data. Results: We found that graphical representations can reveal substantial non-biological differences in samples. Empirical Cumulative Distribution Function and summary scatterplots were especially useful in the rapid identification of problems not identified by manual review. Conclusions: Graphical exploratory data analytic tools are quick and useful means of assessing data quality. We propose that the described visualizations should be used as quality assessment tools and where possible, be used for quality control.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Despite the widespread popularity of linear models for correlated outcomes (e.g. linear mixed models and time series models), distribution diagnostic methodology remains relatively underdeveloped in this context. In this paper we present an easy-to-implement approach that lends itself to graphical displays of model fit. Our approach involves multiplying the estimated margional residual vector by the Cholesky decomposition of the inverse of the estimated margional variance matrix. The resulting "rotated" residuals are used to construct an empirical cumulative distribution function and pointwise standard errors. The theoretical framework, including conditions and asymptotic properties, involves technical details that are motivated by Lange and Ryan (1989), Pierce (1982), and Randles (1982). Our method appears to work well in a variety of circumstances, including models having independent units of sampling (clustered data) and models for which all observations are correlated (e.g., a single time series). Our methods can produce satisfactory results even for models that do not satisfy all of the technical conditions stated in our theory.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

DNA sequence copy number has been shown to be associated with cancer development and progression. Array-based Comparative Genomic Hybridization (aCGH) is a recent development that seeks to identify the copy number ratio at large numbers of markers across the genome. Due to experimental and biological variations across chromosomes and across hybridizations, current methods are limited to analyses of single chromosomes. We propose a more powerful approach that borrows strength across chromosomes and across hybridizations. We assume a Gaussian mixture model, with a hidden Markov dependence structure, and with random effects to allow for intertumoral variation, as well as intratumoral clonal variation. For ease of computation, we base estimation on a pseudolikelihood function. The method produces quantitative assessments of the likelihood of genetic alterations at each clone, along with a graphical display for simple visual interpretation. We assess the characteristics of the method through simulation studies and through analysis of a brain tumor aCGH data set. We show that the pseudolikelihood approach is superior to existing methods both in detecting small regions of copy number alteration and in accurately classifying regions of change when intratumoral clonal variation is present.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Latent class regression models are useful tools for assessing associations between covariates and latent variables. However, evaluation of key model assumptions cannot be performed using methods from standard regression models due to the unobserved nature of latent outcome variables. This paper presents graphical diagnostic tools to evaluate whether or not latent class regression models adhere to standard assumptions of the model: conditional independence and non-differential measurement. An integral part of these methods is the use of a Markov Chain Monte Carlo estimation procedure. Unlike standard maximum likelihood implementations for latent class regression model estimation, the MCMC approach allows us to calculate posterior distributions and point estimates of any functions of parameters. It is this convenience that allows us to provide the diagnostic methods that we introduce. As a motivating example we present an analysis focusing on the association between depression and socioeconomic status, using data from the Epidemiologic Catchment Area study. We consider a latent class regression analysis investigating the association between depression and socioeconomic status measures, where the latent variable depression is regressed on education and income indicators, in addition to age, gender, and marital status variables. While the fitted latent class regression model yields interesting results, the model parameters are found to be invalid due to the violation of model assumptions. The violation of these assumptions is clearly identified by the presented diagnostic plots. These methods can be applied to standard latent class and latent class regression models, and the general principle can be extended to evaluate model assumptions in other types of models.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Currently photon Monte Carlo treatment planning (MCTP) for a patient stored in the patient database of a treatment planning system (TPS) can usually only be performed using a cumbersome multi-step procedure where many user interactions are needed. This means automation is needed for usage in clinical routine. In addition, because of the long computing time in MCTP, optimization of the MC calculations is essential. For these purposes a new graphical user interface (GUI)-based photon MC environment has been developed resulting in a very flexible framework. By this means appropriate MC transport methods are assigned to different geometric regions by still benefiting from the features included in the TPS. In order to provide a flexible MC environment, the MC particle transport has been divided into different parts: the source, beam modifiers and the patient. The source part includes the phase-space source, source models and full MC transport through the treatment head. The beam modifier part consists of one module for each beam modifier. To simulate the radiation transport through each individual beam modifier, one out of three full MC transport codes can be selected independently. Additionally, for each beam modifier a simple or an exact geometry can be chosen. Thereby, different complexity levels of radiation transport are applied during the simulation. For the patient dose calculation, two different MC codes are available. A special plug-in in Eclipse providing all necessary information by means of Dicom streams was used to start the developed MC GUI. The implementation of this framework separates the MC transport from the geometry and the modules pass the particles in memory; hence, no files are used as the interface. The implementation is realized for 6 and 15 MV beams of a Varian Clinac 2300 C/D. Several applications demonstrate the usefulness of the framework. Apart from applications dealing with the beam modifiers, two patient cases are shown. Thereby, comparisons are performed between MC calculated dose distributions and those calculated by a pencil beam or the AAA algorithm. Interfacing this flexible and efficient MC environment with Eclipse allows a widespread use for all kinds of investigations from timing and benchmarking studies to clinical patient studies. Additionally, it is possible to add modules keeping the system highly flexible and efficient.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Automatic identification and extraction of bone contours from X-ray images is an essential first step task for further medical image analysis. In this paper we propose a 3D statistical model based framework for the proximal femur contour extraction from calibrated X-ray images. The automatic initialization is solved by an estimation of Bayesian network algorithm to fit a multiple component geometrical model to the X-ray data. The contour extraction is accomplished by a non-rigid 2D/3D registration between a 3D statistical model and the X-ray images, in which bone contours are extracted by a graphical model based Bayesian inference. Preliminary experiments on clinical data sets verified its validity