945 resultados para Gpi-anchored Protein-enriched Early Endosomal Compartment
Resumo:
Marine brachyuran and anomuran crustaceans are completely absent from the extremely cold (-1.8 °C) Antarctic continental shelf, but caridean shrimps are abundant. This has at least partly been attributed to low capacities for magnesium excretion in brachyuran and anomuran lithodid crabs ([Mg2+]HL = 20-50 mmol/L) compared to caridean shrimp species ([Mg2+]HL = 5-12 mmol/L). Magnesium has an anaesthetizing effect and reduces cold tolerance and activity of adult brachyuran crabs. We investigated whether the capacity for magnesium regulation is a factor that influences temperature-dependent activity of early ontogenetic stages of the Sub-Antarctic lithodid crab Paralomis granulosa. Ion composition (Na+, Mg2+, Ca2+, Cl-, [SO4]2-) was measured in haemolymph withdrawn from larval stages, the first and second juvenile instars (crabs I and II) and adult males and females. Magnesium excretion improved during ontogeny, but haemolymph sulphate concentration was lowest in the zoeal stages. Neither haemolymph magnesium concentrations nor Ca2+:Mg2+ ratios paralleled activity levels of the life stages. Long-term (3 week) cold exposure of crab I to 1 °C caused a significant rise of haemolymph sulphate concentration and a decrease in magnesium and calcium concentrations compared to control temperature (9 °C). Spontaneous swimming activity of the zoeal stages was determined at 1, 4 and 9 °C in natural sea water (NSW, [Mg2+] = 51 mmol/L) and in sea water enriched with magnesium (NSW + Mg2+, [Mg2+] = 97 mmol/L). It declined significantly with temperature but only insignificantly with increased magnesium concentration. Spontaneous velocities were low, reflecting the demersal life style of the zoeae. Heart rate, scaphognathite beat rate and forced swimming activity (maxilliped beat rate, zoea I) or antennule beat rate (crab I) were investigated in response to acute temperature change (9, 6, 3, 1, -1 °C) in NSW or NSW + Mg2+. High magnesium concentration reduced heart rates in both stages. The temperature-frequency curve of the maxilliped beat (maximum: 9.6 beats/s at 6.6 °C in NSW) of zoea I was depressed and shifted towards warmer temperatures by 2 °C in NSW + Mg2+, but antennule beat rate of crab I was not affected. Magnesium may therefore influence cold tolerance of highly active larvae, but it remains questionable whether the slow-moving lithodid crabs with demersal larvae would benefit from an enhanced magnesium excretion in nature.
Resumo:
During Leg 177 of the Ocean Drilling Program (ODP), a well-preserved middle Eocene to lower Miocene sediment record was recovered at Site 1090 on the Agulhas Ridge in the Atlantic sector of the Southern Ocean. This new sediment record shows evidence of a hitherto unknown late Eocene opal pulse. Lithological variations, compositional data, mass-accumulation rates of biogenic and lithogenic sediment constituents, grain-size distributions, geochemistry, and clay mineralogy are used to gain insights into mid-Cenozoic environmental changes and to explore the circumstances of the late Eocene opal pulse in terms of reorganizations in ocean circulation. The base of the section is composed of middle Eocene nannofossil oozes mixed with red clays enriched in authigenic clinoptilolite and smectite, deposited at low sedimentation rates (LE 2 cm/ka). It indicates reduced terrigenous sediment input and moderate biological productivity during this preglacial warm climatic stage. The basal strata are overlain by an extended succession (100 m, 4 cm/ka) of biosiliceous oozes and muds, comprising the upper middle Eocene, the entire late Eocene, and the lowermost early Oligocene. The opal pulse occurred between 37.5 and 33.5 Ma and documents the development of upwelling cells along topographic highs, and the utilization of a marine nutrient- and silica reservoir established during the pre-late Eocene through enhanced submarine hydrothermal activity and the introduction of terrigenous solutions from chemical weathering on adjacent continents. This palaeoceanographic overturn probably was initiated through the onset of increased meridional ocean circulation, caused by the diversion of the Indian equatorial current to the south. The opal pulse was accompanied by increased influxes of terrigenous detritus from southern African sources (illite), mediated by enhanced ocean particle advection in response to modified ocean circulation. The opal pulse ended because of frontal shifts to the south around the Eocene/Oligocene boundary, possibly in response to the opening of the Drake Passage and the incipient establishment of the Antarctic Circumpolar Current. Condensed sediments and a hiatus within the early Oligocene part of the section possibly point to an invigoration of the deep-reaching Antarctic Circumpolar Current. The mid-Oligocene to lower Miocene section on long time scale exhibits less pronounced lithological variations than the older section and points to relatively stable palaeoceanographic conditions after the dramatic changes in the late Eocene to early Oligocene.
Resumo:
Within the last decade, several early Eocene hyperthermals have been detected globally. These transient warming events have mainly been characterized geochemically - using stable isotopes, carbonate content measurements or XRF core scanning - yet detailed micropaleontological records are sparse, limiting our understanding of the driving forces behind hyperthermals and of the contemporaneous paleoceanography. Here, detailed geochemical and quantitative benthic foraminiferal records are presented from lower Eocene pelagic sediments of Deep Sea Drilling Project Site 401 (Bay of Biscay, northeast Atlantic). In calcareous nannofossil zone NP11, several clay-enriched levels correspond to negative d13C and d18O bulk-rock excursions with amplitudes of up to ~0.75 per mil, suggesting that significant injections of 12C-enriched greenhouse gasses and small temperature rises took place. Coeval with several of these hyperthermal events, the benthic foraminiferal record reveals increased relative abundances of oligotrophic taxa (e.g. Nuttallides umbonifera) and a reduction in the abundance of buliminid species followed by an increase of opportunistic taxa (e.g. Globocassidulina subglobosa and Gyroidinoides spp.). These short-lived faunal perturbations are thought to be caused by reduced seasonality of productivity resulting in a decreased Corg flux to the seafloor. Moreover, the sedimentological record suggests that an enhanced influx of terrigenous material occurred during these events. Additionally, the most intense d13C decline (here called level d) gives rise to a small, yet pronounced long-term shift in the benthic foraminiferal composition at this site, possibly due to the reappraisal of upwelling and the intensification of bottom water currents. These observations imply that environmental changes during (smaller) hyperthermal events are also reflected in the composition of deep-sea benthic communities on both short (<100 kyr) and longer time scales. We conclude that the faunal patterns of the hyperthermals observed at Site 401 strongly resemble those observed in other deep-sea early Paleogene hyperthermal deposits, suggesting that similar processes have driven them.
Resumo:
The Early Cretaceous basaltic rocks obtained from Sites 765 and 766 in the eastern Indian Ocean floor were mostly iron-rich normal mid-ocean ridge basalts (N-MORB), which were derived from a depleted mantle source having strongly light rare earth element (LREE)-depleted rare-earth patterns and a high titanium/zirconium (Ti/Zr) ratio. Basaltic rocks in the upper part of the Site 765 basement section include megacrysts and gabbroic fragments of widely varying mineral chemistry. These megacrysts range from An90 plagioclase, including highly magnesian basaltic glass coexisting with augite of Mg# (= 100 Mg/[Fe+Mg]) at 85, to An50 plagioclase coexisting with hypersthene. This varying mineralogy of megacrysts and gabbroic fragments indicates that a considerable degree of fractional crystallization took place in the magma chamber. The unusual negative correlation between incompatible elements (e.g., TiO2) and FeO*/MgO observed among Site 765 basement basalts and fresh volcanic glasses suggest source-mantle heterogeneity in terms of FeO*/MgO. Strontium isotope ratios (87Sr/86Sr) of the basaltic rocks from both sites are between 0.7027 and 0.7033 and are comparable to those of mid-Indian Ocean ridge basalts (MIORB). The basalt pebbles encountered in the sedimentary section may have been transported from the basement highs nearer the Australian continent and include basaltic compositions ranging from primitive N-MORBs to evolved enriched (E)-MORBs. Their mantle source was not as depleted as that of the basement basalts. These rocks may be the products of earlier volcanism that took place during the rifting of the Australian continent.
Resumo:
The effect of decreasing aragonite saturation state (Omega Arag) of seawater (elevated pCO2) on calcification rates of Acropora muricata was studied using nubbins prepared from parent colonies located at two sites of La Saline reef (La Réunion Island, western Indian Ocean): a back-reef site (BR) affected by nutrient-enriched groundwater discharge (mainly nitrate), and a reef flat site (RF) with low terrigenous inputs. Protein and chlorophyll a content of the nubbins, as well as zooxanthellae abundance, were lower at RF than BR. Nubbins were incubated at ~27°C over 2 h under sunlight, in filtered seawater manipulated to get differing initial pCO2 (1,440-340 µatm), Omega Arag (1.4-4.0), and dissolved inorganic carbon (DIC) concentrations (2,100-1,850 µmol/kg). Increasing DIC concentrations at constant total alkalinity (AT) resulted in a decrease in Omega Arag and an increase in pCO2. AT at the beginning of the incubations was kept at a natural level of 2,193 ± 6 µmol/kg (mean ± SD). Net photosynthesis (NP) and calcification were calculated from changes in pH and AT during the incubations. Calcification decrease in response to doubling pCO2 relative to preindustrial level was 22% for RF nubbins. When normalized to surface area of the nubbins, (1) NP and calcification were higher at BR than RF, (2) NP increased in high pCO2 treatments at BR compared to low pCO2 treatments, and (3) calcification was not related to Omega Arag at BR. When normalized to NP, calcification was linearly related to Omega Arag at both sites, and the slopes of the relationships were not significantly different. The increase in NP at BR in the high pCO2 treatments may have increased calcification and thus masked the negative effect of low Omega Arag on calcification. Removing the effect of NP variations at BR showed that calcification declined in a similar manner with decreased Omega Arag (increased pCO2) whatever the nutrient loading.
Resumo:
El objetivo general de esta Tesis Doctoral ha sido tratar de mejorar los parámetros reproductivos de las conejas primíparas lactantes, empleando dos métodos de manejo (destete temprano y extensificación del ritmo reproductivo), que están directamente relacionados con su balance energético. Para ello, se diseñaron 2 experimentos en este tipo de hembras. En el primero, se estudió el efecto del destete a 25 días post-parto (dpp) sobre la actividad ovárica y el metabolismo energético de las conejas una semana más tarde (32 dpp). Un total de 34 primíparas lactantes con 8 gazapos fueron distribuidas en tres grupos: 10 conejas se sacrificaron a los 25 dpp (grupo L25), 13 fueron destetadas a los 25 dpp y sacrificadas a los 32 dpp (grupo NL32), y 11 conejas no se destetaron y fueron sacrificadas a los 32 dpp (grupo L32). No se observaron diferencias significativas entre grupos en el peso corporal, el peso del ovario, ni en las concentraciones séricas de ácidos grasos no esterificados y de proteínas totales. A pesar de que el grupo NL32 presentó un bajo consumo de alimento (122 ± 23,5 g / día, p <0,001), su contenido corporal estimado de lípidos (16,9 ± 1,09%, P <0,008), proteínas (19,7 ± 0,07%, P <0,0001), y energía (1147 ± 42,7 MJ / kg, p <0,006) fueron más elevados y las concentraciones séricas de glucosa (158 ± 24,5 mg/dl, p <0,04) más bajas que en los grupos L25 (11,9 ± 1,3%, 18,5 ± 0,08%, 942 ± 51,3 MJ/kg y 212 ± 27,9 mg/dl) y L32 (13,4 ± 1,03%, 18,5 ± 0,1%, 993 ± 40,4 MJ/kg y 259 ± 29,5 mg/dl), respectivamente. En el grupo L25 se observó un menor número medio de folículos ≥ 1 mm en la superficie ovárica en comparación con los grupos NL32 y L32 (12,7 ± 1,5 vs. 18,0 ± 1,45 y 17,6 ± 1,67, p <0,05). La población folicular ovárica en las secciones histológicas y la inmunolocalización de los receptores de prolactina fueron similares en todos los grupos. En el grupo L25, tanto la maduración nuclear de oocitos, medida en términos de tasas alcanzadas de Metafase II (67,0 vs. 79,7 y 78,3%, P <0.05) y la maduración citoplasmática, medida por el porcentaje de gránulos corticales (GC) total o parcialmente migrados en los oocitos, fueron significativamente menores que en los grupos NL32 y L32 (16,0 vs 38,3 y 60,0%, P <0.05). En conclusión, a pesar de que el destete precoz a 25 dpp pareció mejorar las reservas de energía de las conejas primíparas, este hecho no se reflejó claramente a nivel ovárico a los 32 dpp y fue similar independientemente del destete, por lo que éste último podría llevarse a cabo más tarde. En el segundo experimento, se compararon dos ritmos reproductivos. Se utilizaron un total de 48 conejas primíparas lactantes con 8 gazapos que se asignaron al azar en dos grupos experimentales: a) lactantes sacrificadas a comienzos del post-parto (11 dpp) de acuerdo a un ritmo semi-intensivo (n = 24), y b) lactantes sacrificadas al final del período post-parto (25 dpp) de acuerdo con un ritmo más extensivo (n = 24). En ellas, se estudió el peso vivo, la composición corporal estimada, parámetros metabólicos y endocrinos (estradiol y progesterona) y características ováricas como la población folicular y la tasa de atresia, así como la maduración nuclear y citoplásmica de los oocitos. En este estudio, el peso vivo, el contenido de energía corporal, los depósitos grasos y los ácidos grasos no esterificados disminuyeron a lo largo del post-parto con respecto al momento del parto (P <0,05). Las concentraciones séricas de proteínas y glucosa aumentaron en el mismo periodo post-parto (P <0,05). Se observaron similares niveles de estradiol y progesterona en ambos ritmos, así como una población folicular, tasas de maduración nuclear (tasa de oocitos en metafase II) y citoplasmática (porcentaje de oocitos con gránulos corticales migrados), similares en ambos momentos del post-parto. Sin embargo, el número de folículos preovulatorios en la superficie ovárica fue menor (P <0,05) y la tasa de atresia tendió a ser mayor con un porcentaje también menor de folículos sanos (P <0,1) en los ovarios de las hembras sometidas al ritmo extensivo. En conclusión, al final del post-parto (25 días), las conejas primíparas sin destetar muestran un deterioro de sus reservas corporales, de sus parámetros metabólicos séricos y de la calidad de sus oocitos; incluso se ha observado una ligera influencia negativa en el desarrollo de sus folículos ováricos. Por esta razón, se considera que en las conejas primíparas lactantes el manejo reproductivo extensivo (25 dpp) no presenta ninguna ventaja en comparación con el semi-intensivo (11 dpp). A la vista de los resultados de estos dos experimentos, podemos decir que ni el destete temprano, ni la extensificación del ritmo reproductivo han conseguido una mejora en los parámetros reproductivos de una hembra primípara. Por ello, son necesarios más estudios sobre el estado metabólico de la coneja primípara lactante para conseguir métodos o estrategias que lo mejoren y tengan consecuencias directas sobre la actividad reproductiva y sobre su éxito productivo. The general aim of this Thesis was to study two management methods (early weaning and extensive reproductive rhythm) linked to the energy balance of the primiparous rabbit does to improve their reproductive performance. In this sense, 2 experiments were conducted using this kind of females. In the first experiment, the effect of weaning at 25 days post-partum (dpp) on ovarian activity and energetic metabolism one week later (32 dpp) was studied. A total of 34 primiparous lactating rabbit does were used and distributed among three groups: 10 does euthanized at 25 dpp (group L25), 13 does weaned at 25 dpp and euthanized at 32 dpp (group NL32), and 11 non weaned does euthanized at 32 dpp (group L32). No significant differences were observed in live body weight, ovary weight, serum non esterified fatty acids (NEFA) and total protein concentration among groups. Although NL32 does had a low feed intake (122±23.5 g/Day; P < 0.001), their estimated lipids (16.9±1.09%, P < 0.008), protein (19.7±0.07%, P < 0.0001), and energy (1147±42.7 MJ/kg, P < 0.006) body contents were higher and their serum glucose concentrations (158±24.5 mg/dl, P < 0.04) were lower compared to L25 does (11.9±1.3%, 18.5±0.08%, 942±51.3 MJ/kg and 212±27.9 mg/dl) and L32 does (13.4±1.03%, 18.5±0.1%, 993±40.4 MJ/kg and 259±29.5 mg/dl, respectively). A lower number of follicles ≥1mm was observed compared to NL32 and L32 groups (12.7±1.5 vs. 18.0±1.45 and 17.6 ±1.67; P < 0.05) in the ovarian surface of L25 does. Follicular population in the histological ovarian sections and immunolocalization of prolactin receptor were similar in all groups. In group L25, both nuclear maturation of oocytes in terms of Metaphase II rate (67.0 vs. 79.7 and 78.3%; P < 0.05) and cytoplasmic maturation measured by percentage of cortical granules (CG), totally or partially migrated in oocytes were significantly lower than in groups NL32 and L32 (16.0 vs. 38.3 and 60.0%; P < 0.05). Consequently, a higher rate of oocytes with non-migrated CGs was found in group L25 than in groups NL32 and L32 (76.0 vs. 46.8 and 33.3%; P < 0.05). In conclusion, even though early weaning at 25 dpp seemed to improve body energy stored in primiparous does, this fact was not well reflected on the ovarian status at 32 dpp, which was similar regardless of weaning time. In the second experiment, two reproductive rhythms were compared. A total of 48 primiparous Californian x New Zealand White rabbit does suckling 8 kits were randomly allocated in two experimental groups: a) lactating does euthanized at early post-partum period (11 dpp) according to a semi-intensive rhythm (n = 24), and b) lactating does euthanized on later post-partum period (25 dpp) according to a more extensive rhythm (n = 24). Live weight, estimated body composition, serum metabolic and endocrine parameters (oestradiol and progesterone concentrations) and ovarian features like follicle population and atresia rate, and oocyte maturation were studied. Live weight, body energy content, lipid depots and serum non esterified fatty acids (NEFA) concentrations diminished from parturition time to post-partum period (P < 0.05). In addition, serum protein and glucose concentrations increased along postpartum time (P < 0.05). Similar oestradiol and progesterone levels were shown in rhythms as well as similar follicle population and nuclear and cytoplasmic maturation rates measured as metaphase II and cortical granule migration, respectively in both postpartum times. However, number of preovulatory follicles on the ovarian surface was lower (P < 0.05) and atresia rate tended to be higher with also lower percentage of healthy follicles (P < 0.1) in ovaries of females of extensive group. In conclusion, primiparous non-weaned rabbits does at late post-partum time (25 days), Did no show any improvement regarding body reserves, serum metabolic parameters and oocyte quality; even a slight negative influence has been observed in the development of their ovarian follicles. Thus this reproductive management does not present any advantage compared to earlier post-partum (11 days) reproductive rhythm. In summary, according to the obtained results from these two experiments, we can say that the application of early weaning and the extensive rhythms did not achieve an improvement in the reproductive performance of primiparous does. Thus, it is necessary to conduct more studies about the metabolic status of the primiparous lactating doe to achieve strategies in order to improve it and consequently, to improve the reproductive activity and their productive success.
Resumo:
Early weaning is a stressful event characterized by a transient period of intestinal atrophy that may be mediated by reduced secretion of glucagon-like peptide (GLP) 2. We tested whether enterally fed bile acids or plant sterols could increase nutrient-dependent GLP-2 secretion and improve intestinal adaptation in weanling pigs. During the first 6 d after weaning, piglets were intragastrically infused once daily with either deionized water -control-, chenodeoxycholic acid -CDC; 60mg/kg body weight-, or b-sitoesterol -BSE; 100 mg/kg body weight-. Infusing CDC increased plasma GLP-2 -P menor que 0.05- but did not affect plasma GLP-1 and feed intake. The intestinal expression of Glp2r -glucagon-like peptide 2 receptor-, Asbt -sodium-dependent bile acid transporter-, Fxr -farnesoid X receptor-, and Tgr5 -guanosine protein?coupled bile acid receptor- genes were not affected by CDC treatment. The intragastric administration of CDC did not alter the weight and length of the intestine, yet increased the activation of caspase-3 in ileal villi -P menor que 0.02- and the expression of Il6 -interleukin 6; P menor que 0.002- in the jejunum. In contrast, infusing BSE did not affect any of the variables that were measured. Our results show that the enteral administration of the bile acid CDC potentiates the nutrient-induced secretion of endogenous GLP-2 in early-weaned pigs. Bile acid?enhanced release of GLP-2, however, did not result in improved intestinal growth, morphology, or inflammation during the postweaning degenerative phase.
Resumo:
Protein hydrolysis plays an important role during seed germination and post-germination seedling establishment. In Arabidopsis thaliana, cathepsin B-like proteases are encoded by a gene family of three members, but only the AtCathB3 gene is highly induced upon seed germination and at the early post-germination stage. Seeds of a homozygous T-DNA insertion mutant in the AtCathB3 gene have, besides a reduced cathepsin B activity, a slower germination than the wild type. To explore the transcriptional regulation of this gene, we used a combined phylogenetic shadowing approach together with a yeast one-hybrid screening of an arrayed library of approximately 1200 transcription factor open reading frames from Arabidopsis thaliana. We identified a conserved CathB3-element in the promoters of orthologous CathB3 genes within the Brassicaceae species analysed, and, as its DNA-interacting protein, the G-Box Binding Factor1 (GBF1). Transient overexpression of GBF1 together with a PAtCathB3::uidA (β-glucuronidase) construct in tobacco plants revealed a negative effect of GBF1 on expression driven by the AtCathB3 promoter. In stable P35S::GBF1 lines, not only was the expression of the AtCathB3 gene drastically reduced, but a significant slower germination was also observed. In the homozygous knockout mutant for the GBF1 gene, the opposite effect was found. These data indicate that GBF1 is a transcriptional repressor of the AtCathB3 gene and affects the germination kinetics of Arabidopsis thaliana seeds. As AtCathB3 is also expressed during post-germination in the cotyledons, a role for the AtCathB3-like protease in reserve mobilization is also inferred.
Resumo:
Allergens are responsible for the Th2 response in patients as part of complex mixtures of proteins, fatty acids and other molecules. Plant allergens have hitherto been included in several protein families that share no common biochemical features. Their physical, biochemical and immunological characteristics have been widely studied, but no definite conclusion has been reached about what makes a protein an allergen. N-glycosylation is characteristic of plant allergen sources but is not present in mammals.
Resumo:
Unfavorable environmental and developmental conditions may cause disturbances in protein folding in the endoplasmic reticulum (ER) that are recognized and counteracted by components of the Unfolded Protein Response (UPR) signaling pathways. The early cellular responses include transcriptional changes to increase the folding and processing capacity of the ER. In this study, we systematically screened a collection of inducible transgenic Arabidopsis plants expressing a library of transcription factors for resistance toward UPR-inducing chemicals. We identified 23 candidate genes that may function as novel regulators of the UPR and of which only three genes (bZIP10, TBF1, and NF-YB3) were previously associated with the UPR. The putative role of identified candidate genes in the UPR signaling is supported by favorable expression patterns in both developmental and stress transcriptional analyses. We demonstrated that WRKY75 is a genuine regulator of the ER-stress cellular responses as its expression was found to be directly responding to ER stress-inducing chemicals. In addition, transgenic Arabidopsis plants expressing WRKY75 showed resistance toward salt stress, connecting abiotic and ER-stress responses.
Resumo:
The PML/SP100 nuclear bodies (NBs) were first described as discrete subnuclear structures containing the SP100 protein. Subsequently, they were shown to contain the PML protein which is part of the oncogenic PML-RARα hybrid produced by the t(15;17) chromosomal translocation characteristic of acute promyelocytic leukemia. Yet, the physiological role of these nuclear bodies remains unknown. Here, we show that SP100 binds to members of the heterochromatin protein 1 (HP1) families of non-histone chromosomal proteins. Further, we demonstrate that a naturally occurring splice variant of SP100, here called SP100-HMG, is a member of the high mobility group-1 (HMG-1) protein family and may thus possess DNA-binding potential. Both HP1 and SP100-HMG concentrate in the PML/SP100 NBs, and overexpression of SP100 leads to enhanced accumulation of endogenous HP1 in these structures. When bound to a promoter, SP100, SP100-HMG and HP1 behave as transcriptional repressors in transfected mammalian cells. These observations present molecular evidence for an association between the PML/SP100 NBs and the chromatin nuclear compartment. They support a model in which the NBs may play a role in certain aspects of chromatin dynamics.
Resumo:
Werner Syndrome (WS) is a human genetic disorder with many features of premature aging. The gene defective in WS (WRN) has been cloned and encodes a protein homologous to several helicases, including Escherichia coli RecQ, the human Bloom syndrome protein (BLM), and Saccharomyces cerevisiae Sgs1p. To better define the function of WRN protein we have determined its subcellular localization. Indirect immunofluorescence using polyclonal anti-human WRN shows a predominant nucleolar localization. Studies of WRN mutant cells lines confirmed the specificity of antibody recognition. No difference was seen in the subcellular localization of the WRN protein in a variety of normal and transformed human cell lines, including both carcinomas and sarcomas. The nucleolar localization of human WRN protein was supported by the finding that upon biochemical subcellular fractionation, WRN protein is present in an increased concentration in a subnuclear fraction enriched for nucleolar proteins. We have also determined the subcellular localization of the mouse WRN homologue (mWRN). In contrast to human WRN protein, mWRN protein is present diffusely throughout the nucleus. Understanding the function of WRN in these organisms of vastly differing lifespan may yield new insights into the mechanisms of lifespan determination.
Resumo:
In this work, we describe the isolation of a new cDNA encoding an NADP-dependent isocitrate dehydrogenase (ICDH). The nucleotide sequence in its 5′ region gives a deduced amino acid sequence indicative of a targeting peptide. However, even if this cDNA clearly encodes a noncytosolic ICDH, it is not possible to say from the targeting peptide sequence to which subcellular compartment the protein is addressed. To respond to this question, we have transformed tobacco plants with a construct containing the entire targeting signal-encoding sequence in front of a modified green fluorescent protein (GFP) gene. This construct was placed under the control of the cauliflower mosaic virus 35S promoter, and transgenic tobacco plants were regenerated. At the same time, and as a control, we also have transformed tobacco plants with the same construct but lacking the nucleotide sequence corresponding to the ICDH-targeting peptide, in which the GFP is retained in the cytoplasm. By optical and confocal microscopy of leaf epiderm and Western blot analyses, we show that the putative-targeting sequence encoded by the cDNA addresses the GFP exclusively into the mitochondria of plant cells. Therefore, we conclude that this cDNA encodes a mitochondrial ICDH.
Resumo:
In hippocampal neurons, neurotransmitter release can be regulated by protein kinase A (PKA) through a direct action on the secretory machinery. To identify the site of PKA modulation, we have taken advantage of the ability of the neurotoxin Botulinum A to cleave the synaptic protein SNAP-25. Cleavage of this protein decreases the Ca2+ responsiveness of the secretory machinery by partially uncoupling Ca2+-sensing from fusion per se. This is expressed as a shift toward higher Ca2+ levels of the Ca2+ to neurotransmitter release relationship and as a perturbation of synaptic delay under conditions where secretion induced by the Ca2+-independent secretagogue ruthenium red is unimpaired. We find that SNAP-25 cleavage also perturbs PKA-dependent modulation of secretion; facilitation of ruthenium red-evoked neurotransmitter release by the adenylyl cyclase activator forskolin is blocked completely after Botulinum toxin A action. Together with our observation that forskolin modifies the Ca2+ to neurotransmitter release relationship, our results suggest that SNAP-25 acts as a functional linker between Ca2+ detection and fusion and that PKA modulates an early step in the secretory machinery related to calcium sensing to facilitate synaptic transmission.
Resumo:
We report a serendipitous discovery that extends the impressive catalog of reporter functions performed by green fluorescent protein (GFP) or its derivatives. When two GFP molecules are brought into proximity, changes in the relative intensities of green fluorescence emitted upon excitation at 395 vs. 475 nm result. These spectral changes provide a sensitive ratiometric index of the extent of self-association that can be exploited to quantitatively image homo-oligomerization or clustering processes of GFP-tagged proteins in vivo. The method, which we term proximity imaging (PRIM), complements fluorescence resonance energy transfer between a blue fluorescent protein donor and a GFP acceptor, a powerful method for imaging proximity relationships between different proteins. However, unlike fluorescence resonance energy transfer (which is a spectral interaction), PRIM depends on direct contact between two GFP modules, which can lead to structural perturbations and concomitant spectral changes within a module. Moreover, the precise spatial arrangement of the GFP molecules within a given dimer determines the magnitude and direction of the spectral change. We have used PRIM to detect FK1012-induced dimerization of GFP fused to FK506-binding protein and clustering of glycosylphosphatidylinositol-anchored GFP at cell surfaces.