925 resultados para Glass transition


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Carbon fiber (CF)-reinforced high-temperature thermoplastics such as poly(phenylene sulphide) (PPS) are widely used in structural composites for aerospace and automotive applications. The porosity of CF-reinforced polymers is a very important topic for practical applications since there is a direct correlation between void content and mechanical properties. In this study, inorganic fullerene-like tungsten disulphide (IF-WS2) lubricant nanoparticles were used to manufacture PPS/IF-WS2/CF laminates via melt-blending and hot-press processing, and the effect of IF-WS2 loading on the quality, thermal and mechanical behaviour of the hybrid composites was investigated. The addition of IF-WS2 improved fiber impregnation, resulting in lower degree of porosity and increased delamination resistance, compression and flexural properties; their reinforcement effect was greater at temperatures above the glass transition (Tg). IF-WS2 contents higher than 0.5 wt % increased Tg and the heat deflection temperature while reduced the coefficient of thermal expansion. The multiscale laminates exhibited higher ignition point and notably reduced peak heat release rate compared to PPS/CF. The coexistence of micro- and nano-scale fillers resulted in synergistic effects that enhanced the stiffness, strength, thermal conductivity and flame retardancy of the matrix. The results presented herein demonstrate that the IF-WS2 are very promising nanofillers to improve the thermomechanical properties of conventional thermoplastic/CF composites.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The thermal and mechanical behaviour of isotactic polypropylene (iPP) nanocomposites reinforced with different loadings of inorganic fullerene-like tungsten disulfide (IF-WS2) nanoparticles was investigated. The IF-WS2 noticeably enhanced the polymer stiffness and strength, ascribed to their uniform dispersion, the formation of a large nanoparticle?matrix interface combined with a nucleating effect on iPP crystallization. Their reinforcement effect was more pronounced at high temperatures. However, a drop in ductility and toughness was found at higher IF-WS2 concentrations. The tensile behaviour of the nanocomposites was extremely sensitive to the strain rate and temperature, and their yield strength was properly described by the Eyring s equation. The activation energy increased while the activation volume decreased with increasing nanoparticle loading, indicating a reduction in polymer chain motion. The nanoparticles improved the thermomechanical properties of iPP: raised the glass transition and heat deflection temperatures while decreased the coefficient of thermal expansion. The nanocomposites also displayed superior flame retardancy with longer ignition time and reduced peak heat release rate. Further, a gradual rise in thermal conductivity was found with increasing IF-WS2 loading both in the glassy and rubbery states. The results presented herein highlight the benefits and high potential of using IF-nanoparticles for enhancing the thermomechanical properties of thermoplastic polymers compared to other nanoscale fillers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The mechanical behavior and the deformation and failure micromechanisms of a thermally-bonded polypropylene nonwoven fabric were studied as a function of temperature and strain rate. Mechanical tests were carried out from 248 K (below the glass transition temperature) up to 383 K at strain rates in the range ≈10−3 s−1 to 10−1 s−1. In addition, individual fibers extracted from the nonwoven fabric were tested under the same conditions. Micromechanisms of deformation and failure at the fiber level were ascertained by means of mechanical tests within the scanning electron microscope while the strain distribution at the macroscopic level upon loading was determined by means of digital image correlation. It was found that the nonwoven behavior was mainly controlled by the properties of the fibers and of the interfiber bonds. Fiber properties determined the nonlinear behavior before the peak load while the interfiber bonds controlled the localization of damage after the peak load. The influence of these properties on the strength, ductility and energy absorbed during deformation is discussed from the experimental observations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The thermal, mechanical, and adhesive properties of nanoclay-modified adhesives were investigated. Two organically modified montmorillonites: Cloisite 93A (C93A) and Nanomer I.30E (I.30E) were used as reinforcement of an epoxy adhesive. C93A and I.30E are modified with tertiary and primary alkyl ammonium cations, respectively. The aim was to study the influence of the organoclays on the curing, and on the mechanical and adhesive properties of the nanocomposites. A specific goal was to compare their behavior with that of Cloisite30B/epoxy and Cloisite15A/ epoxy nanocomposites that we have previously studied. Both C30B and C15A are modified with quaternary alkyl ammonium cations. Differential scanning calorimetry results showed that the clays accelerate the curing reaction, an effect that is related to the chemical structure of the ammonium cations. The three Cloisite/nanocomposites showed intercalated clay structures,the interlayer distance was independent of the clay content. The I.30E/epoxy nanocomposites presented exfoliated structure due to the catalytic effect of the organic modifier. Clay-epoxy nanocompo-sites showed lower glass transition temperature (Tg) and higher values of storage modulus than neat epoxy thermoset, with no significant differences between exfoliated or intercalated nanocom-posites. The shear strength of aluminum joints using clay/epoxy adhesives was lower than with the neat epoxy adhesive. The wáter aging was less damaging for joints with I.30E/epoxy adhesive.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper reports on the thermal behavior and mechanical properties of nanocomposites based on unsaturated polyester resin (UP) modified with poly(ɛ-caprolactone) (PCL) and reinforced with an organically modified clay (cloisite 30B). To optimize the dispersion of 30B and the mixing of PCL in the UP resin, two different methods were employed to prepare crosslinked UP–PCL-30B hybrid nanocomposites. Besides, two samples of poly(ɛ-caprolactone) of different molecular weight (PCL2: Mn = 2.103g.mol−1 and PCL50: Mn = 5.104g.mol−1) were used at several concentrations (4, 6, 10 wt%). The 30B concentration was 4 wt% in all the nanocomposites. The morphology of the samples was studied by scanning electron microscopy (SEM). The analysis of X-ray patterns reveals that intercalated structures have been found for all ternary nanocomposites, independently of the molecular weight, PCL concentration and the preparation method selected. A slight rise of the glass transition temperature, Tg, is observed in UP/PCL/4%30B ternary nanocomposites regarding to neat UP. The analysis of the tensile properties of the ternary (hybrid) systems indicates that UP/4%PCL2/4%30B nanocomposite improves the tensile strength and elongation at break respect to the neat UP while the Young modulus remains constant

Relevância:

60.00% 60.00%

Publicador:

Resumo:

O objetivo desse trabalho foi obter polpa de guavira desidratada por atomização, utilizando maltodextrina ou goma arábica como agentes carreadores. Inicialmente, avaliou-se a influência das condições de processo, temperatura do ar de secagem (130, 155 e 180) °C e vazão volumétrica da mistura (20 e 40) mL/min, o tipo e concentração de agente carreador (10 e 20) % nas características físicas, físico-químicas e atividade antioxidante do produto obtido. As propriedades analisadas foram umidade, atividade de água, higroscopicidade, solubilidade, cor, distribuição e tamanho médio de partículas, morfologia, compostos fenólicos totais e atividade antioxidante. A temperatura do ar de secagem e a vazão volumétrica de alimentação influenciaram significativamente todas as propriedades da guavira em pó. A umidade e atividade de água apresentaram os menores valores na temperatura intermediária, independentemente do tipo e concentração do carreador usado. A solubilidade das amostras adicionadas de maltodextrina foram superiores às amostras com goma arábica. O aumento da concentração de agente carreador, em geral, proporcionou um aumento no parâmetro L* e diminuição dos parâmetros a* e b*, tornando as amostras mais claras e reduzindo as tonalidades vermelha e amarela. A guavira em pó apresentou coloração próxima do amarelo e marrom, com grande variação nos parâmetros de cor C* e H* em função das diferentes condições de secagem. A distribuição do tamanho de partículas não teve um padrão definido e o tamanho médio das amostras com maltodextrina foram maiores do que as com goma arábica para a temperatura do ar a 130 °C. No entanto, para as outras temperaturas (155 e 180) °C não houve um comportamento específico do tamanho das partículas em função da vazão de alimentação, tipo e ou concentração de agente carreador. A análise de microscopia eletrônica de varredura permitiu observar que as partículas obtidas tanto com maltodextrina como goma arábica apresentaram formato esférico, superfície rugosa e com adesão de partículas menores nas de maior tamanho, sendo que a superfície das partículas com goma arábica também apresentaram concavidades. A atividade antioxidante foi superior quando utilizada a temperatura de secagem intermediária. A partir das condições selecionadas na primeira etapa (temperatura do ar de 155 °C, vazão volumétrica da mistura de 40 mL/min e 10% de maltodextrina ou goma arábica) a polpa de guavira em pó foi caracterizada quanto a temperatura de transição vítrea, as isotermas de adsorção e a estabilidade à estocagem do ácido ascórbico, compostos fenólicos totais e da atividade antioxidante da polpa de guavira em pó produzida por spray drying ao longo de 120 dias. As temperaturas de transição vítrea foram de (25,2 ± 2,7 °C e 31,4 ± 0,4) °C para os pós produzidos com goma arábica e maltodextrina, respectivamente. O modelo de BET apresentou ajuste muito bom (R2>0,99) para descrever o comportamento de sorção de água das amostras nas temperaturas de (20, 30 e 40) °C. A polpa de guavira em pó produzida com goma arábica apresentou maior adsorção de água do que as amostras obtidas com maltodextrina. No estudo da estabilidade, as amostras foram acondicionadas em embalagem de polietileno laminado e armazenadas a 25 °C e umidade relativa de 75%. A embalagem de polietileno laminado foi eficiente na manutenção do teor de ácido ascórbico e atividade antioxidante da guavira em pó por um período de 120 dias, independente do carreador adicionado. O teor de compostos fenólicos para a guavira em pó com goma arábica apresentou uma redução nos primeiros 22 dias, contudo a amostra com maltodextrina manteve-se estável durante 120 dias de armazenamento.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We study a polydisperse soft-spheres model for colloids by means of microcanonical Monte Carlo simulations. We consider a polydispersity as high as 24%. Although solidification occurs, neither a crystal nor an amorphous state are thermodynamically stable. A finite size scaling analysis reveals that in the thermodynamic limit: a the fluid-solid transition is rather a crystal-amorphous phase-separation, b such phase-separation is preceded by the dynamic glass transition, and c small and big particles arrange themselves in the two phases according to a complex pattern not predicted by any fractionation scenario.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The phase diagram of soft spheres with size dispersion is studied by means of an optimized Monte Carlo algorithm which allows us to equilibrate below the kinetic glass transition for all size distributions. The system ubiquitously undergoes a first-order freezing transition. While for a small size dispersion the frozen phase has a crystalline structure, large density inhomogeneities appear in the highly disperse systems. Studying the interplay between the equilibrium phase diagram and the kinetic glass transition, we argue that the experimentally found terminal polydispersity of colloids is a purely kinetic phenomenon.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Neste trabalho foi estudada a influência da adição de quitosana e sílica a monômeros dimetacrílicos, BisEMA e TEGDMA, por meio das técnicas de fotocalorimetria, termogravimetria e análise dinâmico mecânica. Os resultados dos experimentos de fotocalorimetria demonstraram que a quitosana pode aumentar a velocidade de polimerização e o máximo de conversão para alguns sistemas em determinadas concentrações da mesma, já a sílica tem pouco efeito nas reações de fotopolimerização das amostras. Para os experimentos de termogravimetria, a quitosana tem pouca influência na degradação das amostras não alterando significativamente as curvas TGA/DTG, por outro lado a sílica acelerou a degradação térmica das amostras. A avaliação das propriedades mecânicas demonstrou que a quitosana diminui a temperatura de transição vítrea e a resposta elástica dos sistemas não afetando os valores dos módulos de armazenamento e módulos de perda. A sílica apresentou a tendência de aumento de temperatura de transição vítrea e não alteração da resposta elástica das amostras.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Biopolymers, such as poly(lactic acid) (PLA), have been proposed as environmentally-friendly alternatives in applications such as food packaging. In this work, silver nanoparticles and thymol were used as active additives in PLA matrices, combining the antibacterial activity of silver with the antioxidant performance of thymol. The combined action of both additives influenced PLA thermal degradation in ternary systems. DSC results showed that the addition of thymol resulted in a clear decrease of the glass transition temperature (Tg) of PLA, suggesting its plasticizing effect in PLA matrices. Slight modifications in mechanical properties of dog-bone bars were also observed after the addition of the active components, especially in the elastic modulus. FESEM analyses showed the good distribution of active additives through the PLA matrix, obtaining homogenous surfaces and highlighting the presence of silver nanoparticles successfully embedded into the bulk matrix. Degradation of these PLA-based nanocomposites with thymol and silver nanoparticles in composting conditions indicated that the inherent biodegradable character of this biopolymer was improved after this modification. The obtained nanocomposites showed suitable properties to be used as biodegradable active-food packaging systems with antioxidant and antimicrobial effects.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Novel nano-biocomposite films based on poly (lactic acid) (PLA) were prepared by incorporating thymol, as the active additive, and modified montmorillonite (D43B) at two different concentrations. A complete thermal, structural, mechanical and functional characterization of all nano-biocomposites was carried out. Thermal stability was not significantly affected by the addition of thymol, but the incorporation of D43B improved mechanical properties and reduced the oxygen transmission rate by the formation of intercalated structures, as suggested by wide angle X-ray scattering patterns and transmission electron microscopy images. The addition of thymol decreased the PLA glass transition temperature, as the result of the polymer plasticization, and led to modification of the elastic modulus and elongation at break. Finally, the amount of thymol remaining in these formulations was determined by liquid chromatography (HPLC-UV) and the antioxidant activity by the DPPH spectroscopic method, suggesting that the formulated nano-biocomposites could be considered a promising antioxidant active packaging material.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Poly(lactic acid) (PLA) was melt-blended with a bio-based oligomeric lactic acid (OLA) plasticizer at different concentrations between 15 wt% and 25 wt% in order to enhance PLA ductility and to get a fully biodegradable material with potential application in films manufacturing. OLA was an efficient plasticizer for PLA, as it caused a significant decrease on glass transition temperature (Tg) while improving considerably ductile properties. Only one Tg value was observed in all cases and no apparent phase separation was detected. Films obtained by compression moulding were stored during 3 months under ambient controlled conditions and thermal, mechanical, structural and oxygen barrier properties were studied in order to evaluate the stability of the PLA–OLA films over time. Blends with 20 and 25 wt% OLA remained stable and compatible with PLA within the ageing period. Besides, PLA–20 wt% OLA formulation was the only one which maintained its amorphous state with adequate thermal, mechanical and oxygen barrier properties for flexible films manufacturing.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dielectric barrier discharge (DBD) air plasma is a novel technique for in-package decontamination of food, but it has not been yet applied to the packaging material. Characterization of commercial polylactic acid (PLA) films was done after in-package DBD plasma treatment at different voltages and treatment times to evaluate its suitability as food packaging material. DBD plasma increased the roughness of PLA film mainly at the site in contact with high voltage electrode at both the voltage levels of 70 and 80 kV. DBD plasma treatments did not induce any change in the glass transition temperature, but significant increase in the initial degradation temperature and maximum degradation temperature was observed. DBD plasma treatment did not adversely affect the oxygen and water vapor permeability of PLA. A very limited overall migration was observed in different food simulants and was much below the regulatory limits. Industrial relevance: In-package DBD plasma is a novel and innovative approach for the decontamination of foods with potential industrial application. This paper assesses the suitability of PLA as food packaging material for cold plasma treatment. It characterizes the effect of DBD plasma on the packaging material when used for in-package decontamination of food. The work described in this research offers a promising alternative to classical methods used in fruit and vegetable industries where in-package DBD plasma can serve as an effective decontamination process and avoids any post-process recontamination or hazards from the package itself.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The use of fully bio-based and biodegradable materials for massive applications, such as food packaging, is an emerging tendency in polymer research. But the formulations proposed in this way should preserve or even increase the functional properties of conventional polymers, such as transparency, homogeneity, mechanical properties and low migration of their components to foodstuff. This is not always trivial, in particular when brittle biopolymers, such as poly(lactic acid) (PLA), are considered. In this work the formulation of innovative materials based on PLA modified with highly compatible plasticizers, i.e. oligomers of lactic acid (OLAs) is proposed. Three different synthesis conditions for OLAs were tested and the resulting additives were further blended with commercial PLA obtaining transparent and ductile materials, able for films manufacturing. These materials were tested in their structural, thermal and tensile properties and the best formulation among the three materials was selected. OLA with molar mass (Mn) around 1,000 Da is proposed as an innovative and fully compatible and biodegradable plasticizer for PLA, able to replace conventional plasticizers (phthalates, adipates or citrates) currently used for films manufacturing in food packaging applications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Blends of poly(lactic acid) (PLA) and poly(3-hydroxybutyrate) (PHB) plasticized with a lactic acid oligomer (OLA) added at three different concentrations (15, 20 and 30 wt% by weight), were prepared by an optimized extrusion process to improve the processability and mechanical properties of these biopolymers for flexible film manufacturing. Morphological, chemical, thermal, mechanical, barrier and migration properties were investigated and formulations with desired performance in eco-friendly films were selected. The efficiency of OLA as plasticizer for PLA_PHB blends was demonstrated by the significant decrease of their glass transition temperatures and a considerable improvement of their ductile properties. The measured improvements in the barrier properties are related to the higher crystallinity of the plasticized PLA_PHB blends, while the overall migration test underlined that all the proposed formulations maintained migration levels below admitted levels. The PLA_PHB blend with 30 wt% OLA was selected as the optimum formulation for food packaging, since it offered the best compromise between ductility and oxygen and water vapor barrier properties with practically no migration.