947 resultados para Ghost imaging


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: An asynchronous eLearning system was developed for radiographers in order to promote a better knowledge about senology and mammography. Objectives: to assess the learners’ satisfaction. Methods: Target population included radiographers and radiogr aphy students, in order to assess eLearning satisfaction according to different experience levels in breast imaging. Satisfaction was measured through a questionnaire developed especially for eLearning systems, using a seven - point Likert scale. Main topics related are content, interface, personalization and learning community. Results: Overall, 85% of learners were satisfied with the course and 87,5% considered that the course is successful. Main areas that were evaluated by most learners in a positive way were interface and content (between six and seven - point); on the other hand, learning community presented a wider distribution of answers . Conclusions: The course provides an overall high degree of learner satisfaction, thus providing more effective knowle dge gain on breast imaging for radiographers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

de imagem em RM, caracterizada pela sua alta resolução espacial e grande sensibilidade a diferenças de susceptibilidade magnética dos tecidos, acentuando as propriedades paramagnéticas de produtos como a desoxihemoglobina, hemossiderina, ferro e cálcio e sendo particularmente útil na avaliação das estruturas venosas. Objectivos: O objectivo deste trabalho é fazer uma breve revisão das aplicações clínicas da sequência SWI em neuropediatria e demonstrar a sua grande utilidade, nomeadamente em comparação as a sequência T2*. Material e Métodos: Os exames foram realizados a crianças com idades compreendidas entre o período neonatal e os 16 anos, internadas ou seguidas em consulta no Hospital Pediátrico D. Estefânia; as imagens SWI foram efectuadas em equipamento Siemens 1.5 T, Avanto, com os seguintes parâmetros: TR 49, TE 40, flip angle 15, espessura 1,6mm. Resultados: Apresentamos vários casos ilustrativos de patologias em que o SWI demonstra a sua utilidade e mais-valia, nomeadamente na detecção de lesões hemorrágicas recentes ou antigas em diferentes contextos particulares em neuropediatria (patologia hipoxico-isquémica, vascular, trauma não acidental), detecção de cavernomas e anomalias venosas de desenvolvimento, avaliação de tumores e doenças neurodegenerativas. Conclusão: A sequência SWI é bastante útil na avaliação imagiológica de várias patologias e variantes venosas em neuropediatria, fornecendo uma informação adicional com implicações diagnósticas e prognósticas comparativamente com o T2*, obviando também a administração de contraste para avaliação de estruturas venosas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multifocal intraocular lenses (MF IOLs) have concentric optical zones with different dioptric power, enabling patients to have good visual acuity at multiple focal points. However, several optical limitations have been attributed to this particular design. The purpose of this study is to access the effect of MF IOLs design on the accuracy of retinal optical coherence tomography (OCT). Cross-sectional study conducted at the Refractive Surgery Department of Central Lisbon Hospital Center. Twenty-three eyes of 15 patients with a diffractive MF IOL and 27 eyes of 15 patients with an aspheric monofocal IOL were included in this study. All patients underwent OCT macular scans using Heidelberg Spectralis®. Macular thickness and volume values and image quality (Q factor) were compared between the two groups. There were no statistically significant differences between both groups regarding macular thickness or volume measurements. Retinal OCT image quality was significantly lower in the MF IOL group (p < 0.01). MF IOLs are associated with a significant decrease in OCT image quality. However, this fact does not seem to compromise the accuracy of spectral domain OCT retinal measurements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multiparametric Magnetic Resonance Imaging has been increasingly used for detection, localization and staging of prostate cancer over the last years. It combines high-resolution T2 Weighted-Imaging and at least two functional techniques, which include Dynamic Contrast–Enhanced Magnetic Resonance Imaging, Diffusion-Weighted Imaging, and Magnetic Resonance Imaging Spectroscopy. Although the combined use of a pelvic phased-array and an Endorectal Coil is considered the state-of-the-art for Magnetic Resonance Imaging evaluation of prostate cancer, Endorectal Coil is only absolute mandatory for Magnetic Resonance Imaging Spectroscopy at 1.5 T. Sensitivity and specificity levels in cancer detection and localization have been improving with functional technique implementation, compared to T2 Weighted-Imaging alone. It has been particularly useful to evaluate patients with abnormal PSA and negative biopsy. Moreover, the information added by the functional techniques may correlate to cancer aggressiveness and therefore be useful to select patients for focal radiotherapy, prostate sparing surgery, focal ablative therapy and active surveillance. However, more studies are needed to compare the functional techniques and understand the advantages and disadvantages of each one. This article reviews the basic principles of prostatic mp-Magnetic Resonance Imaging, emphasizing its role on detection, staging and active surveillance of prostate cancer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hypoxia, a condition of insufficient oxygen availability to support metabolism, occurs when the vascular supply is interrupted, as in stroke. The identification of the hypoxic and viable tissue in stroke as compared with irreversible lesions (necrosis) has relevant implications for the treatment of ischemic stroke. Traditionally, imaging by positron emission tomography (PET), using 15O-based radiotracers, allowed the measurement of perfusion and oxygen extraction in stroke, providing important insights in its pathophysiology. However, these multitracer evaluations are of limited applicability in clinical settings. More recently, specific tracers have been developed, which accumulate with an inverse relationship to oxygen concentration and thus allow visualizing the hypoxic tissue non invasively. These belong to two main groups: nitroimidazoles, and among these the 18F-Fluoroimidazole (18F-FMISO) is the most widely used, and the copper-based tracers, represented mainly by Cu-ATSM. While these tracers have been at first developed and tested in order to image hypoxia in tumors, they have also shown promising results in stroke models and preliminary clinical studies in patients with cardiovascular disorders, allowing the detection of hypoxic tissue and the prediction of the extent of subsequent ischemia and clinical outcome. These tracers have therefore the potential to select an appropriate subgroup of patients who could benefit from a hypoxia-directed treatment and provide prognosis relevant imaging. The molecular imaging of hypoxia made important progress over the last decade and has a potential for integration into the diagnostic and therapeutic workup of patients with ischemic stroke.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE-We studied whether manganese-enhanced high-field magnetic resonance (MR) imaging (MEHFMRI) could quantitatively detect individual islets in situ and in vivo and evaluate changes in a model of experimental diabetes.RESEARCH DESIGN AND METHODS-Whole pancreata from untreated (n = 3), MnCl(2) and glucose-injected mice (n = 6), and mice injected with either streptozotocin (STZ; n = 4) or citrate buffer (n = 4) were imaged ex vivo for unambiguous evaluation of islets. Exteriorized pancreata of MnCl(2) and glucose-injected mice (n = 6) were imaged in vivo to directly visualize the gland and minimize movements. In all cases, MR images were acquired in a 14.1 Testa scanner and correlated with the corresponding (immuno)histological sections.RESULTS-In ex vivo experiments, MEHFMRI distinguished different pancreatic tissues and evaluated the relative abundance of islets in the pancreata of normoglycemic mice. MEHFMRI also detected a significant decrease in the numerical and volume density of islets in STZ-injected mice. However, in the latter measurements the loss of beta-cells was undervalued under the conditions tested. The experiments on the externalized pancreata confirmed that MEHFMRI could visualize native individual islets in living, anesthetized mice.CONCLUSIONS-Data show that MEHFMRI quantitatively visualizes individual islets in the intact mouse pancreas, both ex vivo and in vivo. Diabetes 60:2853-2860, 2011

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Standard chest radiographs have been shown to be insensitive for the diagnosis of morphologic abnormalities of airways. Computed tomography is the most sensitive and specific investigation to diagnose emphysema. However, as emphysema may be missed on computed tomography, this investigation cannot be used to definitely rule out the diagnosis. Computed tomography may contribute to the investigation of bronchiolitis, and it is now considered as the gold standard for establishing the diagnosis of bronchiectasis. Imaging may contribute to identify complications such as bronchopulmonary infection, pulmonary hypertension, pneumothorax, cancer of the lung, compressive bullae, and pulmonary embolism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The determination of characteristic cardiac parameters, such as displacement, stress and strain distribution are essential for an understanding of the mechanics of the heart. The calculation of these parameters has been limited until recently by the use of idealised mathematical representations of biventricular geometries and by applying simple material laws. On the basis of 20 short axis heart slices and in consideration of linear and nonlinear material behaviour we have developed a FE model with about 100,000 degrees of freedom. Marching Cubes and Phong's incremental shading technique were used to visualise the three dimensional geometry. In a quasistatic FE analysis continuous distribution of regional stress and strain corresponding to the endsystolic state were calculated. Substantial regional variation of the Von Mises stress and the total strain energy were observed at all levels of the heart model. The results of both the linear elastic model and the model with a nonlinear material description (Mooney-Rivlin) were compared. While the stress distribution and peak stress values were found to be comparable, the displacement vectors obtained with the nonlinear model were generally higher in comparison with the linear elastic case indicating the need to include nonlinear effects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neural stem cells have been proposed as a new and promising treatment modality in various pathologies of the central nervous system, including malignant brain tumors. However, the underlying mechanism by which neural stem cells target tumor areas remains elusive. Monitoring of these cells is currently done by use of various modes of molecular imaging, such as optical imaging, magnetic resonance imaging and positron emission tomography, which is a novel technology for visualizing metabolism and signal transduction to gene expression. In this new context, the microenvironment of (malignant) brain tumors and the blood-brain barrier gains increased interest. The authors of this review give a unique overview of the current molecular-imaging techniques used in different therapeutic experimental brain tumor models in relation to neural stem cells. Such methods for molecular imaging of gene-engineered neural stem/progenitor cells are currently used to trace the location and temporal level of expression of therapeutic and endogenous genes in malignant brain tumors, closing the gap between in vitro and in vivo integrative biology of disease in neural stem cell transplantation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ABSTRACT: q-Space-based techniques such as diffusion spectrum imaging, q-ball imaging, and their variations have been used extensively in research for their desired capability to delineate complex neuronal architectures such as multiple fiber crossings in each of the image voxels. The purpose of this article was to provide an introduction to the q-space formalism and the principles of basic q-space techniques together with the discussion on the advantages as well as challenges in translating these techniques into the clinical environment. A review of the currently used q-space-based protocols in clinical research is also provided.