997 resultados para Genes, Dominant


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chemokine (C-C motif) ligand 5 (CCL5) and chemokine (C-C motif) receptor 5 are implicated in the pathogenesis of diabetic nephropathy (DN). We hypothesize that variants in these genes may be associated with DN. The CCL5 and chemokine receptor type 5 (CCR5) genes were resequenced, variants identified (n=58), allele frequencies determined in 46 individuals (92 chromosomes) and efficient haplotype tag single-nucleotide polymorphisms (htSNPs) selected to effectively evaluate the common variation in these genes. One reportedly functional gene variant and eight htSNPs were genotyped in a case-control association study involving Caucasian individuals with type 1 diabetes (267 cases with DN and 442 non-nephropathic diabetic controls). Genotyping was performed using MassARRAY iPLEX, TaqMan, gel electrophoresis and direct capillary sequencing. After correction for multiple testing, there were no statistically significant associations between variants in the CCL5 and CCR5 genes and DN. Journal of Human Genetics (2010) 55, 248-251; doi:10.1038/jhg.2010.15; published online 5 March 2010

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The biological role of steroid 5 alpha-reductase isozymes (encoded by the SRD5A1 and SRD5A2 genes) and angiogenic factors that play important roles in the pathogenesis and vascularization of prostate cancer (PC) is poorly understood. The sub-cellular expression of these isozymes and vascular endothelial growth factor (VEGF) in PC tissue microarrays (n=62) was examined using immunohistochemistry. The effect of SRD5A inhibition on the angiogenesis pathway genes in PC was also examined in prostate cell lines, LNCaP, PC3, and RWPE-1, by treating them with the SRD5A inhibitors finasteride and dutasteride, followed by western blot, quantitative PCR, and ELISA chip array techniques. In PC tissues, nuclear SRD5A1 expression was strongly associated with higher cancer Gleason scores (P=0.02), higher cancer stage (P=0.01), and higher serum prostate specific antigen (PSA) levels (P=0.01), whereas nuclear SRD5A2 expression was correlated with VEGF expression (P=0.01). Prostate tumor cell viability was significantly reduced in dutasteride-treated PC3 and RWPE-1 cells compared with finasteride-treated groups. Expression of the angiogenesis pathway genes transforming growth factor beta 1 (TGFB1), endothelin (EDN1), TGF alpha (TGFA), and VEGFR1 was upregulated in LNCaP cells, and at least 7 out of 21 genes were upregulated in PC3 cells treated with finasteride (25 mu M). Our findings suggest that SRD5A1 expression predominates in advanced PC, and that inhibition of SRD5A1 and SRD5A2 together was more effective in reducing cell numbers than inhibition of SRD5A2 alone. However, these inhibitors did not show any significant difference in prostate cell angiogenic response. Interestingly, some angiogenic genes remained activated after treatment, possibly due to the duration of treatment and tumor resistance to inhibitors. Endocrine-Related Cancer (2010) 17 757-770

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The t(11; 17)(q23;q21) translocation is associated with a retinoic acid (RA)-insensitive form of acute promyelocytic leukemia (APL), involving the production of reciprocal fusion proteins, promyelocytic leukemia zinc finger-retinoic acid receptor alpha (PLZF-RAR alpha) and RAR alpha-PLZF. Using a combination of chromatin immuno-precipitation promotor arrays (ChIP-chip) and gene expression profiling, we identify novel, direct target genes of PLZF-RAR alpha that tend to be repressed in APL compared with other myeloid leukemias, supporting the role of PLZF-RAR alpha as an aberrant repressor in APL. In primary murine hematopoietic progenitors, PLZF-RAR alpha promotes cell growth, and represses Dusp6 and Cdkn2d, while inducing c-Myc expression, consistent with its role in leukemogenesis. PLZF-RAR alpha binds to a region of the c-MYC promoter overlapping a functional PLZF site and antagonizes PLZF-mediated repression, suggesting that PLZF-RAR alpha may act as a dominant-negative version of PLZF by affecting the regulation of shared targets. RA induced the differentiation of PLZF-RAR alpha-transformed murine hematopoietic cells and reduced the frequency of clonogenic progenitors, concomitant with c-Myc down-regulation. Surviving RA-treated cells retained the ability to be replated and this was associated with sustained c-Myc expression and repression of Dusp6, suggesting a role for these genes in maintaining a self-renewal pathway triggered by PLZF-RAR alpha. (Blood. 2009; 114: 5499-5511)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Expression profiling of BRCA1-deficient tumours has identified a pattern of gene expression similar to basal-like breast tumours. In this study, we examine whether a BRCA1-dependent transcriptional mechanism may underpin the link between BRCA1 and basal-like phenotype. In methods section, the mRNA and protein were harvested from a number of BRCA1 mutant and wild-type breast cancer cell lines and from matched isogenic controls. Microarray-based expression profiling was used to identify potential BRCA1-regulated transcripts. These gene targets were then validated (by in silico analysis of tumour samples) by real-time PCR and Western blot analysis. Chromatin immunoprecipitation (ChIP) assays were used to confirm recruitment of BRCA1 to specific promoters. In results, we demonstrate that functional BRCA1 represses the expression of cytokeratins 5(KRT5) and 17(KRT17) and p-Cadherin (CDH3) in HCC1937 and T47D breast cancer cell lines at both mRNA and protein level. ChIP assays demonstrate that BRCA1 is recruited to the promoters of KRT5, KRT17 and CDH3, and re-ChIP assays confirm that BRCA1 is recruited independently to form c-Myc and Sp1 complexes on the CDH3 promoter. We show that siRNA-mediated inhibition of endogenous c-Myc (and not Sp1) results in a marked increase in CDH3 expression analogous to that observed following the inhibition of endogenous BRCA1. The data provided suggest a model whereby BRCA1 and c-Myc form a repressor complex on the promoters of specific basal genes and represent a potential mechanism to explain the observed overexpression of key basal markers in BRCA1-deficient tumours.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

T-box 2 (TBX2) is a transcription factor involved in mammary development and is known to be overexpressed in a subset of aggressive breast cancers. TBX2 has previously been shown to repress growth control genes such as p14(ARF) and p21(WAF1/cip1). In this study we show that TBX2 drives proliferation in breast cancer cells and this is abrogated after TBX2 small interfering RNA (siRNA) knockdown or after the expression of a dominant-negative TBX2 protein. Using microarray analysis we identified a large cohort of novel TBX2-repressed target genes including the breast tumour suppressor NDRG1 (N-myc downregulated gene 1). We show that TBX2 targets NDRG1 through a previously undescribed mechanism involving the recruitment of early growth response 1 (EGR1). We show EGR1 is required for the ability of TBX2 to repress NDRG1 and drive cell proliferation. We show that TBX2 interacts with EGR1 and that TBX2 requires EGR1 to target the NDRG1 proximal promoter. Abrogation of either TBX2 or EGR1 expression is accompanied by the upregulation of cell senescence and apoptotic markers. NDRG1 can recapitulate these effects when transfected into TBX2-expressing cells. Together, these data identify a novel mechanism for TBX2-driven oncogenesis and highlight the importance of NDRG1 as a growth control gene in breast tissue. Oncogene (2010) 29, 3252-3262; doi: 10.1038/onc.2010.84; published online 29 March 2010

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several studies have provided compelling evidence implicating the Wnt signalling pathway in the pathogenesis of diabetic nephropathy. Gene expression profiles associated with renal fibrosis have been attenuated through Wnt pathway modulation in model systems implicating Wnt pathway members as potential therapeutic targets for the treatment of diabetic nephropathy. We assessed tag and potentially functional single nucleotide polymorphisms (SNPs; n = 31) in four key Wnt pathway genes (CTNNB1, AXIN2, LRP5 and LRP6) for association with diabetic nephropathy using a case-control design.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Ten to twenty per cent of breast tumours exhibit a basallike genetic profile and these tumours carry a poor prognosis. Breast tumours which contain germline mutations for BRCA1 commonly exhibit a molecular profile similar to basal breast tumours. BRCA1 is a tumour suppressor gene which is mutated in up to 5–10% of breast cancer cases and is involved in multiple cellular processes including DNA damage control, cell cycle checkpoint control, apoptosis, ubiquitination and transcriptional regulation.

Methods Microarray-based profiling was carried out using the HCC1937EV and HCC1937BR breast cancer cell lines. Basal gene and protein expression levels were analysed by qRT-PCR and western blotting. ChIP analyses were performed and demonstrated that BRCA1 regulates basal gene expression through a transcriptional mechanism involving c-myc.

Results We have previously carried out microarray-based expression profiling to examine differences in gene expression when BRCA1 is reconstituted in BRCA1 mutated HCC1937 breast cancer cells. We observed that p-cadherin and the cytokeratin 5 and cytokeratin 17 genes, which are strongly correlated with the basal phenotype, are differentially expressed when BRCA1 is reconstituted. In addition, qRT-PCR and ChIP analysis of BRCA1 reconstituted cells show that BRCA1 represses the expression of these basal genes by a transcriptional mechanism. Furthermore, abrogation of endogenous BRCA1 protein in the T47D cell line using siRNA results in reexpression of these basal genes, suggesting that BRCA1 expression levels may be important in basal gene expression. We have also demonstrated that BRCA1 is physically associated with the promoter regions of basal genes through an association with c-myc. Consequently, we have confirmed that siRNA inhibition of c-myc in T47D cells results in re-expression of these genes.

Conclusions Our results suggest that BRCA1 is involved in the transcriptional regulation of genes associated with the basal phenotype and that BRCA1 controls basal gene expression through a transcriptional mechanism involving c-myc. Further work is now concentrating on defining the relationship between BRCA1 and basal gene expression and how this may affect clinical responses to breast cancer chemotherapy.