999 resultados para GIS modeling
Resumo:
Most psychophysical studies of object recognition have focussed on the recognition and representation of individual objects subjects had previously explicitely been trained on. Correspondingly, modeling studies have often employed a 'grandmother'-type representation where the objects to be recognized were represented by individual units. However, objects in the natural world are commonly members of a class containing a number of visually similar objects, such as faces, for which physiology studies have provided support for a representation based on a sparse population code, which permits generalization from the learned exemplars to novel objects of that class. In this paper, we present results from psychophysical and modeling studies intended to investigate object recognition in natural ('continuous') object classes. In two experiments, subjects were trained to perform subordinate level discrimination in a continuous object class - images of computer-rendered cars - created using a 3D morphing system. By comparing the recognition performance of trained and untrained subjects we could estimate the effects of viewpoint-specific training and infer properties of the object class-specific representation learned as a result of training. We then compared the experimental findings to simulations, building on our recently presented HMAX model of object recognition in cortex, to investigate the computational properties of a population-based object class representation as outlined above. We find experimental evidence, supported by modeling results, that training builds a viewpoint- and class-specific representation that supplements a pre-existing repre-sentation with lower shape discriminability but possibly greater viewpoint invariance.
Resumo:
In macaque inferotemporal cortex (IT), neurons have been found to respond selectively to complex shapes while showing broad tuning ("invariance") with respect to stimulus transformations such as translation and scale changes and a limited tuning to rotation in depth. Training monkeys with novel, paperclip-like objects, Logothetis et al. could investigate whether these invariance properties are due to experience with exhaustively many transformed instances of an object or if there are mechanisms that allow the cells to show response invariance also to previously unseen instances of that object. They found object-selective cells in anterior IT which exhibited limited invariance to various transformations after training with single object views. While previous models accounted for the tuning of the cells for rotations in depth and for their selectivity to a specific object relative to a population of distractor objects, the model described here attempts to explain in a biologically plausible way the additional properties of translation and size invariance. Using the same stimuli as in the experiment, we find that model IT neurons exhibit invariance properties which closely parallel those of real neurons. Simulations show that the model is capable of unsupervised learning of view-tuned neurons. The model also allows to make experimentally testable predictions regarding novel stimulus transformations and combinations of stimuli.
Resumo:
Tsunoda et al. (2001) recently studied the nature of object representation in monkey inferotemporal cortex using a combination of optical imaging and extracellular recordings. In particular, they examined IT neuron responses to complex natural objects and "simplified" versions thereof. In that study, in 42% of the cases, optical imaging revealed a decrease in the number of activation patches in IT as stimuli were "simplified". However, in 58% of the cases, "simplification" of the stimuli actually led to the appearance of additional activation patches in IT. Based on these results, the authors propose a scheme in which an object is represented by combinations of active and inactive columns coding for individual features. We examine the patterns of activation caused by the same stimuli as used by Tsunoda et al. in our model of object recognition in cortex (Riesenhuber 99). We find that object-tuned units can show a pattern of appearance and disappearance of features identical to the experiment. Thus, the data of Tsunoda et al. appear to be in quantitative agreement with a simple object-based representation in which an object's identity is coded by its similarities to reference objects. Moreover, the agreement of simulations and experiment suggests that the simplification procedure used by Tsunoda (2001) is not necessarily an accurate method to determine neuronal tuning.
Resumo:
Stock markets employ specialized traders, market-makers, designed to provide liquidity and volume to the market by constantly supplying both supply and demand. In this paper, we demonstrate a novel method for modeling the market as a dynamic system and a reinforcement learning algorithm that learns profitable market-making strategies when run on this model. The sequence of buys and sells for a particular stock, the order flow, we model as an Input-Output Hidden Markov Model fit to historical data. When combined with the dynamics of the order book, this creates a highly non-linear and difficult dynamic system. Our reinforcement learning algorithm, based on likelihood ratios, is run on this partially-observable environment. We demonstrate learning results for two separate real stocks.
Resumo:
Numerous psychophysical experiments have shown an important role for attentional modulations in vision. Behaviorally, allocation of attention can improve performance in object detection and recognition tasks. At the neural level, attention increases firing rates of neurons in visual cortex whose preferred stimulus is currently attended to. However, it is not yet known how these two phenomena are linked, i.e., how the visual system could be "tuned" in a task-dependent fashion to improve task performance. To answer this question, we performed simulations with the HMAX model of object recognition in cortex [45]. We modulated firing rates of model neurons in accordance with experimental results about effects of feature-based attention on single neurons and measured changes in the model's performance in a variety of object recognition tasks. It turned out that recognition performance could only be improved under very limited circumstances and that attentional influences on the process of object recognition per se tend to display a lack of specificity or raise false alarm rates. These observations lead us to postulate a new role for the observed attention-related neural response modulations.
Resumo:
Existing fuel taxes play a major role in determining the welfare effects of exempting the transportation sector from measures to control greenhouse gases. To study this phenomenon we modify the MIT Emissions Prediction and Policy Analysis (EPPA) model to disaggregate the household transportation sector. This improvement requires an extension of the GTAP data set that underlies the model. The revised and extended facility is then used to compare economic costs of cap-and-trade systems differentiated by sector, focusing on two regions: the USA where the fuel taxes are low, and Europe where the fuel taxes are high. We find that the interplay between carbon policies and pre-existing taxes leads to different results in these regions: in the USA exemption of transport from such a system would increase the welfare cost of achieving a national emissions target, while in Europe such exemptions will correct pre-existing distortions and reduce the cost.
Resumo:
Modeling and simulation permeate all areas of business, science and engineering. With the increase in the scale and complexity of simulations, large amounts of computational resources are required, and collaborative model development is needed, as multiple parties could be involved in the development process. The Grid provides a platform for coordinated resource sharing and application development and execution. In this paper, we survey existing technologies in modeling and simulation, and we focus on interoperability and composability of simulation components for both simulation development and execution. We also present our recent work on an HLA-based simulation framework on the Grid, and discuss the issues to achieve composability.
Resumo:
Observations in daily practice are sometimes registered as positive values larger then a given threshold α. The sample space is in this case the interval (α,+∞), α > 0, which can be structured as a real Euclidean space in different ways. This fact opens the door to alternative statistical models depending not only on the assumed distribution function, but also on the metric which is considered as appropriate, i.e. the way differences are measured, and thus variability
Resumo:
This paper analyzes a proposed release controlmethodology, WIPLOAD Control (WIPLCtrl), using a transfer line case modeled by Markov process modeling methodology. The performance of WIPLCtrl is compared with that of CONWIP under 13 system configurations in terms of throughput, average inventory level, as well as average cycle time. As a supplement to the analytical model, a simulation model of the transfer line is used to observe the performance of the release control methodologies on the standard deviation of cycle time. From the analysis, we identify the system configurations in which the advantages of WIPLCtrl could be observed.
Resumo:
This paper presents a model and analysis of a synchronous tandem flow line that produces different part types on unreliable machines. The machines operate according to a static priority rule, operating on the highest priority part whenever possible, and operating on lower priority parts only when unable to produce those with higher priorities. We develop a new decomposition method to analyze the behavior of the manufacturing system by decomposing the long production line into small analytically tractable components. As a first step in modeling a production line with more than one part type, we restrict ourselves to the case where there are two part types. Detailed modeling and derivations are presented with a small two-part-type production line that consists of two processing machines and two demand machines. Then, a generalized longer flow line is analyzed. Furthermore, estimates for performance measures, such as average buffer levels and production rates, are presented and compared to extensive discrete event simulation. The quantitative behavior of the two-part type processing line under different demand scenarios is also provided.
Resumo:
This paper is a first draft of the principle of statistical modelling on coordinates. Several causes —which would be long to detail—have led to this situation close to the deadline for submitting papers to CODAWORK’03. The main of them is the fast development of the approach along the last months, which let appear previous drafts as obsolete. The present paper contains the essential parts of the state of the art of this approach from my point of view. I would like to acknowledge many clarifying discussions with the group of people working in this field in Girona, Barcelona, Carrick Castle, Firenze, Berlin, G¨ottingen, and Freiberg. They have given a lot of suggestions and ideas. Nevertheless, there might be still errors or unclear aspects which are exclusively my fault. I hope this contribution serves as a basis for further discussions and new developments
Resumo:
En la actualidad el proyecto gvSIG se encuentra en una etapa bastante avanzada. La aplicación ya posee múltiples funcionalidades que la convierten en una herramienta de referencia dentro del mundo de SIG, especialmente en ambientes opensource. En este momento, en que gvSIG es una aplicación consolidada sobre equipos de sobremesa, surge la necesidad de ampliar las plataformas de ejecución de gvSIG a una gama de dispositivos móviles, para dar respuesta a las necesidades de un creciente número de usuarios de soluciones móviles que desean hacer uso de un SIG en diferentes tipos de dispositivos. De esta manera el universo de gvSIG se verá ampliado al dotarlo de todas las ventajas de utilización en una amplia gama de dispositivos. Se va a describir el alcance previsto del proyecto gvSIG Mobile, la situación actual y una introducción tecnológica a las características del desarrollo de la aplicación sobre la plataforma J2ME
Resumo:
Presentación del software desarrollado inicialmente por Horacio González Diéguez y Berio Molina Quiroga para el proyecto Escoitar (http://www.escoitar.org); un sitio Web elaborado mediante un mashup que combina la tecnología podcast con los mapas de Google. En breve Escoitar.org lanzará su versión 2.0 desarrollada íntegramente con SPIP, CMS distribuido bajo licencia GNU/GPL de origen francés (http://www.SPIP.net/es). Nuestra contribución a SPIP ha sido un conjunto de plugins que utilizan GeoRSS, tecnología de sindicación con información geográfica, para facilitar la integración de artículos, imágenes, o sonidos, en mapas como los de Google (http://www.SPIP-contrib.net/Plugin-GIS-escoitar). SPIP GIS permite asociar información geográfica a los elementos tradicionales de un gestor de contenidos como artículos, temas o etiquetas. Google Map Api Plugin utiliza dicha información geográfica para construir google maps en los que se integre la información contenida en el sitio Web. La arquitectura de estos dos plugins ha sido desarrollada para posibilitar en un futuro el uso de otras plataformas como los mapas de Yahoo o de OpenStreetMap
Resumo:
In the last years, the use of every type of Digital Elevation Models has iimproved. The LiDAR (Light Detection and Ranging) technology, based on the scansion of the territory b airborne laser telemeters, allows the construction of digital Surface Models (DSM), in an easy way by a simple data interpolation
Resumo:
This paper describes HidroGIS, a GIS platform developed by Water Resources Program at Universidad Nacional de Colombia at Medellín. HidroSIG is a tool for hydrological variables visualization and analysis, using a set of modules that make this software a powerful tool for hydrological modeling. HidroSIG has tools for digital terrain models processing, water supply estimation using long term water balance in watersheds, a rainfall-runoff model, a model for landslide susceptibility estimation, an one-dimensional pollutant transport model, tools for homogeneity analysis in time series and tools for satellite images classification. The tools in development status are also described