993 resultados para Frequency features
Resumo:
In Illinois and Iowa, the author finds that plants with approximately 750 employees have suffered the highest strike-frequency rate. Why at this size? Among other explanations, it is posited that in significantly smaller plants labor-management relations can be personalized-and tensions reduced-while in appreciably larger plants sophistication in dealing with disputes may, of necessity, have been developed. C. Fred Eisele is a graduate teaching assistant at the University of Iowa's College of Business Administration.
Resumo:
We investigated the association between exposure to radio-frequency electromagnetic fields (RF-EMFs) from broadcast transmitters and childhood cancer. First, we conducted a time-to-event analysis including children under age 16 years living in Switzerland on December 5, 2000. Follow-up lasted until December 31, 2008. Second, all children living in Switzerland for some time between 1985 and 2008 were included in an incidence density cohort. RF-EMF exposure from broadcast transmitters was modeled. Based on 997 cancer cases, adjusted hazard ratios in the time-to-event analysis for the highest exposure category (>0.2 V/m) as compared with the reference category (<0.05 V/m) were 1.03 (95% confidence interval (CI): 0.74, 1.43) for all cancers, 0.55 (95% CI: 0.26, 1.19) for childhood leukemia, and 1.68 (95% CI: 0.98, 2.91) for childhood central nervous system (CNS) tumors. Results of the incidence density analysis, based on 4,246 cancer cases, were similar for all types of cancer and leukemia but did not indicate a CNS tumor risk (incidence rate ratio = 1.03, 95% CI: 0.73, 1.46). This large census-based cohort study did not suggest an association between predicted RF-EMF exposure from broadcasting and childhood leukemia. Results for CNS tumors were less consistent, but the most comprehensive analysis did not suggest an association.
Resumo:
Chromosomal anomalies, like Robertsonian and reciprocal translocations represent a big problem in cattle breeding as their presence induces, in the carrier subjects, a well documented fertility reduction. In cattle reciprocal translocations (RCPs, a chromosome abnormality caused by an exchange of material between nonhomologous chromosomes) are considered rare as to date only 19 reciprocal translocations have been described. In cattle it is common knowledge that the Robertsonian translocations represent the most common cytogenetic anomalies, and this is probably due to the existence of the endemic 1;29 Robertsonian translocation. However, these considerations are based on data obtained using techniques that are unable to identify all reciprocal translocations and thus their frequency is clearly underestimated. The purpose of this work is to provide a first realistic estimate of the impact of RCPs in the cattle population studied, trying to eliminate the factors which have caused an underestimation of their frequency so far. We performed this work using a mathematical as well as a simulation approach and, as biological data, we considered the cytogenetic results obtained in the last 15 years. The results obtained show that only 16% of reciprocal translocations can be detected using simple Giemsa techniques and consequently they could be present in no less than 0,14% of cattle subjects, a frequency five times higher than that shown by de novo Robertsonian translocations. This data is useful to open a debate about the need to introduce a more efficient method to identify RCP in cattle.
Resumo:
Background: oscillatory activity, which can be separated in background and oscillatory burst pattern activities, is supposed to be representative of local synchronies of neural assemblies. Oscillatory burst events should consequently play a specific functional role, distinct from background EEG activity – especially for cognitive tasks (e.g. working memory tasks), binding mechanisms and perceptual dynamics (e.g. visual binding), or in clinical contexts (e.g. effects of brain disorders). However extracting oscillatory events in single trials, with a reliable and consistent method, is not a simple task. Results: in this work we propose a user-friendly stand-alone toolbox, which models in a reasonable time a bump time-frequency model from the wavelet representations of a set of signals. The software is provided with a Matlab toolbox which can compute wavelet representations before calling automatically the stand-alone application. Conclusion: The tool is publicly available as a freeware at the address: http:// www.bsp.brain.riken.jp/bumptoolbox/toolbox_home.html
Resumo:
In this paper, we present a comprehensive study of different Independent Component Analysis (ICA) algorithms for the calculation of coherency and sharpness of electroencephalogram (EEG) signals, in order to investigate the possibility of early detection of Alzheimer’s disease (AD). We found that ICA algorithms can help in the artifact rejection and noise reduction, improving the discriminative property of features in high frequency bands (specially in high alpha and beta ranges). In addition to different ICA algorithms, the optimum number of selected components is investigated, in order to help decision processes for future works.
Resumo:
Background: Data on the frequency of extraintestinal manifestations (EIM) in inflammatory bowel disease (IBD) is scarce, especially the one evaluating the time of occurrence of the EIM relative to IBD diagnosis. Aim: To assess the type and frequency of EIM in IBD patients and to evaluate when EIMs occur relative to IBD diagnosis. Methods: Analysis of data from the Swiss Inflammatory Bowel Disease Cohort (SIBDCS) which collects data on a large sample of IBD patients from hospitals and private practices across Switzerland starting in 2005. While parametric data are shown as mean ± SD, non-parametric data are presented as median and interquartile range (IQR). Results: A total of 1143 patients were analyzed (572 (50%) female, mean age 42.1 ± 14.4 years): 629 (55%) with Crohn's disease (CD), 501 (44%) with ulcerative colitis (UC), and 13 (1%) with indeterminate colitis (IC). Of 1143 patients, 374 (32.7%) presented with EIM (65% with CD, 33% with UC, 2% with IC). Of those patients suffering from EIMs, 37.4% presented with one, 41.7% with two, 12.4% with three, 5.3% with four, and 3.2% with five EIM during their lifetime. The IBD patients initially presented with the following EIMs: peripheral arthritis (PA) 63.4%, ankylosing spondylitis (AS) 8.1%, primary sclerosing cholangitis (PSC) 6.0%, uveitis 5.7%, oral aphthosis 5.7%, erythema nodosum (EN) 5.0%, pyoderma gangrenosum 1.8%, psoriasis 0.7%. While 92.9% of EIM occurred once IBD diagnosis was established (median 72 months, IQR 9-147 months, p < 0.001), 7.1% of EIMs preceded IBD diagnosis (median time 28 months before IBD diagnosis, IQR 7-60 months). Over a course of a lifetime, IBD patients presented with the following EIM (total exceeds 100 due to potential presence of multiple EIM): peripheral arthritis 69.3%, oral aphthosis 23%, ankylosing spondylitis 19.4%, uveitis 15.5%, erythema nodosum 14.5%, PSC 7.8%, pyoderma gangrenosum 6%, psoriasis 2.8%. Conclusion: EIMs frequently occur in a lifetime of IBD patients. The vast majority of patients present with EIMs once IBD diagnosis has been established. IBD patients most often present with peripheral arthritis, ankylosing spondylitis and PSC as their first EIM. However, peripheral arthritis, oral aphthosis, and ankylosing spondylitis are the most common EIMs in a lifetime of IBD patients.
Resumo:
A statewide study was conducted to develop regression equations for estimating flood-frequency discharges for ungaged stream sites in Iowa. Thirty-eight selected basin characteristics were quantified and flood-frequency analyses were computed for 291 streamflow-gaging stations in Iowa and adjacent States. A generalized-skew-coefficient analysis was conducted to determine whether generalized skew coefficients could be improved for Iowa. Station skew coefficients were computed for 239 gaging stations in Iowa and adjacent States, and an isoline map of generalized-skew-coefficient values was developed for Iowa using variogram modeling and kriging methods. The skew map provided the lowest mean square error for the generalized-skew- coefficient analysis and was used to revise generalized skew coefficients for flood-frequency analyses for gaging stations in Iowa. Regional regression analysis, using generalized least-squares regression and data from 241 gaging stations, was used to develop equations for three hydrologic regions defined for the State. The regression equations can be used to estimate flood discharges that have recurrence intervals of 2, 5, 10, 25, 50, 100, 200, and 500 years for ungaged stream sites in Iowa. One-variable equations were developed for each of the three regions and multi-variable equations were developed for two of the regions. Two sets of equations are presented for two of the regions because one-variable equations are considered easy for users to apply and the predictive accuracies of multi-variable equations are greater. Standard error of prediction for the one-variable equations ranges from about 34 to 45 percent and for the multi-variable equations range from about 31 to 42 percent. A region-of-influence regression method was also investigated for estimating flood-frequency discharges for ungaged stream sites in Iowa. A comparison of regional and region-of-influence regression methods, based on ease of application and root mean square errors, determined the regional regression method to be the better estimation method for Iowa. Techniques for estimating flood-frequency discharges for streams in Iowa are presented for determining ( 1) regional regression estimates for ungaged sites on ungaged streams; (2) weighted estimates for gaged sites; and (3) weighted estimates for ungaged sites on gaged streams. The technique for determining regional regression estimates for ungaged sites on ungaged streams requires determining which of four possible examples applies to the location of the stream site and its basin. Illustrations for determining which example applies to an ungaged stream site and for applying both the one-variable and multi-variable regression equations are provided for the estimation techniques.
Resumo:
The first phase of the study of intersection lighting and accidents conducted using data from 1964 through 1971 yielded the conclusion that the installation of intersection lighting reduced the nighttime accident frequency by 52%. With this conclusion, this project (the second phase), was initiated to determine the relative benefit of a higher level of lighting as opposed to minimum lighting. Twenty pairs of intersections with similar geometrics were selected. Some lights were turned out at one intersection of each pair to produce a lighting level differential. Based on the results of this research, the lighting level of lighted rural at-grade intersections does not have a significant effect on the accident frequency. At the nineteen "reduced lighting" intersections, the number of lighted luminaires was reduced from 101 to 46 with a corresponding reduction in energy consumption of over 100,000 Kilowatt hours per year. This energy conservation measure could reduce consumption by an estimated 1,000,000 Kilowatt hours per year if initiated on more than 200 earlier primary, rural installations.
Resumo:
The prevalence of keratosis pilaris and accentuated palmoplantar marking was evaluated in 61 patients with atopic dermatitis, 35 patients with dominant ichthyosis vulgaris and 247 other dermatological cases taken as controls. Our data showed that (1) these features are of no diagnostic significance for atopic dermatitis and (2) they are significantly more frequent in patients with ichthyosis vulgaris without associated eczema than in those with atopic dermatitis. Consequently, they should be considered as part of the phenotype of ichthyosis vulgaris rather than attributed to a concomitant atopic dermatitis as suggested by some. These findings should be taken into account when evaluating atopic dermatitis or ichthyosis. To assess the frequency of scaling under winter weather conditions, 155 control subjects were also examined for evidence of visible desquamation and 25.8% showed slight but definite scaling.
Resumo:
Background: Mantle cell lymphoma (MCL) is genetically characterized by the t(11;14)(q13;q32) translocation and a high number of secondary chromosomal alterations. The contribution of DNA methylation to MCL lymphomagenesis is not well known. We sought to identify epigenetically silenced genes in these tumours that might have clinical relevance. Methodology/Principal Findings: To identify potential methylated genes in MCL we initially investigated seven MCL cell lines treated with epigenetic drugs and gene expression microarray profiling. The methylation status of selected candidate genes was validated by a quantitative assay and subsequently analyzed in a series of primary MCL (n=38). After pharmacological reversion we identified 252 potentially methylated genes. The methylation analysis of a subset of these genes (n=25) in the MCL cell lines and normal B lymphocytes confirmed that 80% of them were methylated in the cell lines but not in normal lymphocytes. The subsequent analysis in primary MCL identified five genes (SOX9,HOXA9,AHR,NR2F2 ,and ROBO1) frequently methylated in these tumours. The gene methylation events tended to occur in the same primary neoplasms and correlated with higher proliferation, increased number of chromosomal abnormalities, and shorter survival of the patients. Conclusions: We have identified a set of genes whose methylation degree and gene expression levels correlate with aggressive clinicopathological features of MCL. Our findings also suggest that a subset of MCL might show a CpG island methylator phenotype (CIMP) that may influence the behaviour of the tumours.
Resumo:
The objective of this project was to assess the predictive accuracy of flood frequency estimation for small Iowa streams based on the Rational Method, the NRCS curve number approach, and the Iowa Runoff Chart. The evaluation was based on comparisons of flood frequency estimates at sites with sufficiently long streamgage records in the Midwest, and selected urban sites throughout the United States. The predictive accuracy and systematic biases (under- or over-estimation) of the approaches was evaluated based on forty-six Midwest sites and twenty-one urban sites. The sensitivity of several watershed characteristics such as soil properties, slope, and land use classification was also explored. Recommendations on needed changes or refinements for applications to Iowa streams are made.
Resumo:
Two portable Radio Frequency IDentification (RFID) systems (made by Texas Instruments and HiTAG) were developed and tested for bridge scour monitoring by the Department of Civil and Environmental Engineering at the University of Iowa (UI). Both systems consist of three similar components: 1) a passive cylindrical transponder of 2.2 cm in length (derived from transmitter/responder); 2) a low frequency reader (~134.2 kHz frequency); and 3) an antenna (of rectangular or hexagonal loop). The Texas Instruments system can only read one smart particle per time, while the HiTAG system was successfully modified here at UI by adding the anti-collision feature. The HiTAG system was equipped with four antennas and could simultaneously detect 1,000s of smart particles located in a close proximity. A computer code was written in C++ at the UI for the HiTAG system to allow simultaneous, multiple readouts of smart particles under different flow conditions. The code is written for the Windows XP operational system which has a user-friendly windows interface that provides detailed information regarding the smart particle that includes: identification number, location (orientation in x,y,z), and the instance the particle was detected.. These systems were examined within the context of this innovative research in order to identify the best suited RFID system for performing autonomous bridge scour monitoring. A comprehensive laboratory study that included 142 experimental runs and limited field testing was performed to test the code and determine the performance of each system in terms of transponder orientation, transponder housing material, maximum antenna-transponder detection distance, minimum inter-particle distance and antenna sweep angle. The two RFID systems capabilities to predict scour depth were also examined using pier models. The findings can be summarized as follows: 1) The first system (Texas Instruments) read one smart particle per time, and its effective read range was about 3ft (~1m). The second system (HiTAG) had similar detection ranges but permitted the addition of an anti-collision system to facilitate the simultaneous identification of multiple smart particles (transponders placed into marbles). Therefore, it was sought that the HiTAG system, with the anti-collision feature (or a system with similar features), would be preferable when compared to a single-read-out system for bridge scour monitoring, as the former could provide repetitive readings at multiple locations, which could help in predicting the scour-hole bathymetry along with maximum scour depth. 2) The HiTAG system provided reliable measures of the scour depth (z-direction) and the locations of the smart particles on the x-y plane within a distance of about 3ft (~1m) from the 4 antennas. A Multiplexer HTM4-I allowed the simultaneous use of four antennas for the HiTAG system. The four Hexagonal Loop antennas permitted the complete identification of the smart particles in an x, y, z orthogonal system as function of time. The HiTAG system can be also used to measure the rate of sediment movement (in kg/s or tones/hr). 3) The maximum detection distance of the antenna did not change significantly for the buried particles compared to the particles tested in the air. Thus, the low frequency RFID systems (~134.2 kHz) are appropriate for monitoring bridge scour because their waves can penetrate water and sand bodies without significant loss of their signal strength. 4) The pier model experiments in a flume with first RFID system showed that the system was able to successfully predict the maximum scour depth when the system was used with a single particle in the vicinity of pier model where scour-hole was expected. The pier model experiments with the second RFID system, performed in a sandbox, showed that system was able to successfully predict the maximum scour depth when two scour balls were used in the vicinity of the pier model where scour-hole was developed. 5) The preliminary field experiments with the second RFID system, at the Raccoon River, IA near the Railroad Bridge (located upstream of 360th street Bridge, near Booneville), showed that the RFID technology is transferable to the field. A practical method would be developed for facilitating the placement of the smart particles within the river bed. This method needs to be straightforward for the Department of Transportation (DOT) and county road working crews so it can be easily implemented at different locations. 6) Since the inception of this project, further research showed that there is significant progress in RFID technology. This includes the availability of waterproof RFID systems with passive or active transponders of detection ranges up to 60 ft (~20 m) within the water–sediment column. These systems do have anti-collision and can facilitate up to 8 powerful antennas which can significantly increase the detection range. Such systems need to be further considered and modified for performing automatic bridge scour monitoring. The knowledge gained from the two systems, including the software, needs to be adapted to the new systems.
Resumo:
In contrast with the low frequency of most single epitope reactive T cells in the preimmune repertoire, up to 1 of 1,000 naive CD8(+) T cells from A2(+) individuals specifically bind fluorescent A2/peptide multimers incorporating the A27L analogue of the immunodominant 26-35 peptide from the melanocyte differentiation and melanoma associated antigen Melan-A. This represents the only naive antigen-specific T cell repertoire accessible to direct analysis in humans up to date. To get insight into the molecular basis for the selection and maintenance of such an abundant repertoire, we analyzed the functional diversity of T cells composing this repertoire ex vivo at the clonal level. Surprisingly, we found a significant proportion of multimer(+) clonotypes that failed to recognize both Melan-A analogue and parental peptides in a functional assay but efficiently recognized peptides from proteins of self- or pathogen origin selected for their potential functional cross-reactivity with Melan-A. Consistent with these data, multimers incorporating some of the most frequently recognized peptides specifically stained a proportion of naive CD8(+) T cells similar to that observed with Melan-A multimers. Altogether these results indicate that the high frequency of Melan-A multimer(+) T cells can be explained by the existence of largely cross-reactive subsets of naive CD8(+) T cells displaying multiple specificities.
Resumo:
This paper proposes an automatic hand detection system that combines the Fourier-Mellin Transform along with other computer vision techniques to achieve hand detection in cluttered scene color images. The proposed system uses the Fourier-Mellin Transform as an invariant feature extractor to perform RST invariant hand detection. In a first stage of the system a simple non-adaptive skin color-based image segmentation and an interest point detector based on corners are used in order to identify regions of interest that contains possible matches. A sliding window algorithm is then used to scan the image at different scales performing the FMT calculations only in the previously detected regions of interest and comparing the extracted FM descriptor of the windows with a hand descriptors database obtained from a train image set. The results of the performed experiments suggest the use of Fourier-Mellin invariant features as a promising approach for automatic hand detection.