985 resultados para French Atlantic


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cosmopolitan genus Ceramium (Ceramiaceae, Rhodophyta) is a large and systematically complex group. The taxonomy of this genus remains in a chaotic state due to the high degree of morphological variation. Culture studies, suggesting a strong influence of environment on phenotype, and the use of molecular tools have recently questioned the validity of morphological features used in species recognition. Here we compare three Ceramium taxa from Venice lagoon with samples from northwest Europe using the plastid ribulose-1,5-bisphosphate carboxylase/oxygenase gene (rbcL) and the rbcL-rbcS intergenic spacer combined with morphological observations. A strongly banded species, previously identified as member of a poorly understood and misnamed group, the Ceramium diaphanum complex sensu Feldmann-Mazoyer, is probably conspecific with British samples of Ceramium diaphanum sensu Harvey, for which no valid name has been identified up to now. We show that Ceramium polyceras (Kutzing) Zanardini is a valid name for this species. A fully corticated Ceramium species morphologically resembling C. secundatum differs at the species level from Atlantic C. secundatum; a valid name for this entity is Ceramium derbesii Solier ex Kutzing, described from Mediterranean France. A third species characterized by cortical spines, previously listed as Ceramium ciliation var. robustum (J. Agardh) Mazoyer, is shown to be Ceramium nudiusculum (Kutzing) Rabenhorst, originally described from Venice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two species of Osmundea Stackhouse (Rhodomelaceae, Rhodophyta) that occur in Atlantic Europe have been confused under the names Osmundea ramosissima (Oeder) Athanasiadis and Osmundea truncata (Kutzing) Nam et Maggs, regarded until now as a synonym of O. ramosissima, An epitype from its type locality (Stavanger, Norway) is selected for Osmundea ramosissima Athanasiadis, recognized here as a valid name for Fucus ramosissimus Oeder, nom. illeg. Details of vegetative and reproductive morphology of O. ramosissima are reported, based on material from France, the British Isles, and Helgoland. Osmundea ramosissima resembles other species of Osmundea in its vegetative axial segments with two pericentral cells and one trichoblast, spermatangial development from apical and epidermal cells (filament type), the formation of five pericentral cells in the procarp-bearing segment of the female trichoblast, and tetrasporangial production from random epidermal cells. Among the species of Osmundea, O. ramosissima is most similar to O. truncata. Both species have discoid holdfasts, secondary pit connections between epidermal cells, and cup-shaped spermatangial pits. They differ in that: (a) O. ramosissima lacks lenticular wail thickenings and refractive needle-like inclusions in medullary cells, both of which are present in O. truncata; (b) O. ramosissima has branched spermatangial filaments that terminate in a cluster of several cells, whereas in O. truncata the unbranched spermatangial filaments have a single large terminal sterile cell; and (c) cystocarps of O. ramosissima lack protuberant ostioles but ostioles are remarkably protuberant in o. truncata. Phylogenetic analyses of rbcL sequences of Laurencia obtusa (Hudson) Lamouroux and all five Atlantic European species of Osmundea, including the type species, strongly support the generic status of Osmundea. Osmundea ramosissima and O. truncata are closely related (5.2% sequence divergence) and form a well-supported clade sister to a clade consisting of O. pinnatifida (Hudson) Stack-house, O. osmunda Stackhouse and O. hybrida (A. P. de Candolle) Nam. The formation of secondary pit connections between epidermal cells is a synapomorphy for the O. ramosissima + O. truncata clade. The close relationship between species with cup-shaped spermatangial pits (Osmundea hybrida) and urn-shaped pits (Osmundea pinnatifida and Osmundea osmunda) shows that spermatangial pit shape is not an important phylogenetic character. Parsimony analysis of a morphological data set also supports the genus Osmundea but conflicts with the molecular trees in infrageneric relationships, placing O. hybrida basal within the Osmundea clade and grouping O. osmunda and O. pinnatifida but not O. truncata and O. ramosissima. A key to Osmundea species is presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Gymnogongrus devoniensis (Greville) Schotter complex in the North Atlantic Ocean was elucidated by comparative molecular, morphological, and culture studies. Restriction fragment length patterns and hybridization data on organellar DNA revealed two distinct taxa in samples from Europe and eastern Canada. Nucleotide sequences for the intergenic spacer between the large and small subunit genes of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), and the adjoining regions of both genes, differed by 12.5-13.4% between the two taxa. One of the taxa, which included material from the type locality of G. devoniensis at Torbay, Devon, England, was taken to represent authentic G. devoniensis. Within this taxon, samples from Ireland, England, northern France, northern Spain, and southern Portugal showed great morphological variation, particularly in habit, but their Rubisco spacer sequences were identical or differed by only a single nucleotide. Constant morphological features included the development, from a single auxiliary cell, of the spherical cystocarp with a thick mucilage sheath that appears to be typical of Gymnogongrus species with internal cystocarps. Two life-history types were found. Northern isolates underwent a direct-type life history, recycling apomictic females by carpospores, whereas the Portuguese isolate followed a heteromorphic life history in which carpospores gave rise to a crustose tetrasporophyte.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A diminutive species of Aglaothamnion (Ceramiaceae, Rhodophyta), A. diaphanum sp. nov., is described from Brittany (Atlantic France), the Isles of Scilly (off S.W. England) and western Ireland. Aglaothamnion diaphanum is confined to the sublittoral zone, where it grows almost exclusively on algae and sessile animals attached to hard substrata. Thalli are delicate, and branched distichously in one plane. The main axes are ecorticate but may form loose non-corticating rhizoidal filaments. The lateral branches bear a characteristic, regularly alternate distichous series of branchlets, the first of which is always adaxial. All vegetative cells are uninucleate. The majority of field-collected plants bear only bisporangia, but a few bisporangial plants also form spermatangia; some male plants and a single female specimen have been collected. The spermatangial branchlets consist of 3-5 spermatangial mother cells each bearing 2-4 spermatangia, which are constricted around a central nucleus. None of the U-shaped carpogonial branches showed any sign of fertilization, and the gametangia appear to be non-functional. The bisporangia are ovoid and contain two uninucleate spores separated by an oblique curved wall. The occurrence of bisporangia and the lack of adherent cortication distinguish A. diaphanum from two similar species, Aglaothamnion bipinnatum (P. Crouan et H. Crouan) Feldmann-Mazoyer and Aglaothamnion decompositum (J. Agardh) Halos. The life history in culture of French and Irish isolates of A. diaphanum consists of a series of bisporangial generations, a single plant of which also formed spermatangia. Apical cells of bisporophytes are haploid (n = c. 32), but the first division of meiosis, with chromosome pairing and crossing over, occurs in dividing bisporocytes. The germinating bispores are haploid. Endodiploidization may occur in the early stages of sporangium development, as in some phycomycete fungi, or in vegetative cells that subsequently give rise to bisporocytes. This is the first demonstration in the red algae of meiotic bisporangia on plants of which the apical cells, at least, are haploid.