952 resultados para Free-surface Flows
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Internal residual stresses significantly influence the fatigue strength of coated materials. It is well known that chromium plating is the most used electrodeposited coating for important industrial applications. However, pressure to identify alternatives or to improve the chromium electroplating process have increased in recent years, related to the reduction in fatigue strength of the base material and to environmental requirements. The high efficiency and fluoride free hard chromium electroplating there called accelerated) is an improvement to the conventional process. One environmentally safer and cleaner alternative to hard chromium plating is tungsten carbide thermal spray coating applied by the High Velocity Oxy-Fuel (HVOF) process. To increase the fatigue strength of chromium plated materials, coating thickness and microcracks density are important parameters to be controlled. Techniques as compressive residual stresses induced by shot peening and multilayers, are also used. The aim of this study was to analyse the effects on AISI 4340 steel, in the rotating bending fatigue behaviour, of the: tungsten carbide thermal spray coating applied by HP/HVOF process; chemical nickel underplate, and shot peening process applied before coating deposition, in comparison to hard chromium electroplatings. Rotating bending fatigue test results indicate better performance for the conventional hard chromium plating in relation to the accelerated hard chromium electroplating. Tungsten carbide thermal spray coating and accelerated hard chromium plate over nickel resulted in higher fatigue strength when compared to samples conventional or accelerated hard chromium plated. Shot peening showed to be an excellent alternative to increase fatigue strength of AISI 4340 steel hard chromium electroplated. (C) 2001 Elsevier B.V. Ltd. All rights reserved.
Resumo:
The purpose of this in vitro study was to evaluate alterations in the surface roughness and micromorphology of human enamel submitted to three prophylaxis methods. Sixty-nine caries-free molars with exposed labial surfaces were divided into three groups. Group I was treated with a rotary instrument set at a low speed, rubber clip and a mixture of water and pumice; group II with a rotary instrument set at a low speed, rubber cup and prophylaxis paste Herjos-F (Vigodent S/A Industria e Comercio, Rio de Janeiro, Brazil); and group III with sodium bicarbonate spray Profi II Ceramic (Dabi A dante Indtistrias Medico Odontologicas Ltda, Ribeirao Preto, Brazil). All procedures were performed by the same operator for 10 s, and samples were rinsed and stored in distilled water. Pre and post-treatment surface evaluation was completed using a surface profilometer (Perthometer S8P Marh, Perthen, Germany) in 54 samples. In addition, the other samples were coated with gold and examined in a scanning electron microscope (SEM). The results of this study were statistically analyzed with the paired t-test (Student), the Kruskal-Wallis test and the Dunn (5%) test. The sodium bicarbonate spray led to significantly rougher surfaces than the pumice paste. The use of prophylaxis paste showed no statistically significant difference when compared with the other methods. Based on SEM analysis, the sodium bicarbonate spray presented an irregular surface with granular material and erosions. Based on this study, it can be concluded that there was an increased enamel stuface roughness when teeth were treated with sodium bicarbonate spray when compared with teeth treated with pumice paste.
Resumo:
This paper presents numerical simulations of incompressible fluid flows in the presence of a magnetic field at low magnetic Reynolds number. The equations governing the flow are the Navier-Stokes equations of fluid motion coupled with Maxwell's equations of electromagnetics. The study of fluid flows under the influence of a magnetic field and with no free electric charges or electric fields is known as magnetohydrodynamics. The magnetohydrodynamics approximation is considered for the formulation of the non-dimensional problem and for the characterization of similarity parameters. A finite-difference technique is used to discretize the equations. In particular, an extension of the generalized Peaceman and Rachford alternating-direction implicit (ADI) scheme for simulating two-dimensional fluid flows is presented. The discretized conservation equations are solved in stream function-vorticity formulation. We compare the ADI and generalized ADI schemes, and show that the latter is more efficient in simulating low Reynolds number and magnetic Reynolds number problems. Numerical results demonstrating the applicability of this technique are also presented. The simulation of incompressible magneto hydrodynamic fluid flows is illustrated by numerical solution for two-dimensional cases. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Let f: M -> M be a fiber-preserving map where S -> M -> B is a bundle and S is a closed surface. We study the abelianized obstruction, which is a cohomology class in dimension 2, to deform f to a fixed point free map by a fiber-preserving homotopy. The vanishing of this obstruction is only a necessary condition in order to have such deformation, but in some cases it is sufficient. We describe this obstruction and we prove that the vanishing of this class is equivalent to the existence of solution of a system of equations over a certain group ring with coefficients given by Fox derivatives.
Resumo:
A transferência de energia térmica da superfície corporal para a água é provavelmente o aspecto mais importante do equilíbrio térmico em mamíferos marinhos, mas os respectivos cálculos dependem do conhecimento da temperatura da superfície, T S, cuja medição direta em animais em liberdade constitui um problema difícil de resolver. Um método iterativo é proposto para a predição de T S de cetáceos em liberdade, a partir da temperatura corporal profunda, da velocidade de deslocamento e da temperatura e propriedades termodinâmicas da água.
Resumo:
The holographic imaging of rigid objects with diode lasers emitting in many wavelengths in a sillenite Bi12TiO20 photorefractive crystal is both theoretically an experimentally investigated. It is shown that, due to the multi-wavelength emission and the typically large free spectral range of this light source, contour fringes appear on the holographic image corresponding to the surface relief, even in single-exposure recordings. The influence of the number of emitted modes on the fringe width is analysed, and the possible applications of the contour fringes in the field of optical metrology are pointed out.
Resumo:
The element-free Galerkin method (EFGM) is a very attractive technique for solutions of partial differential equations, since it makes use of nodal point configurations which do not require a mesh. Therefore, it differs from FEM-like approaches by avoiding the need of meshing, a very demanding task for complicated geometry problems. However, the imposition of boundary conditions is not straightforward, since the EFGM is based on moving-least-squares (MLS) approximations which are not necessarily interpolants. This feature requires, for instance, the introduction of modified functionals with additional unknown parameters such as Lagrange multipliers, a serious drawback which leads to poor conditionings of the matrix equations. In this paper, an interpolatory formulation for MLS approximants is presented: it allows the direct introduction of boundary conditions, reducing the processing time and improving the condition numbers. The formulation is applied to the study of two-dimensional magnetohydrodynamic flow problems, and the computed results confirm the accuracy and correctness of the proposed formulation. (C) 2002 Elsevier B.V. All rights reserved.
Resumo:
The preparation of crack-free SnO2 supported membranes requires the development of new strategies of synthesis capable to allow controlled changes of surface chemistry and to improve the processability of supported layers. In this way, the controlled modification of the SnO2 nanoparticle surface by adding capping molecules like Tiron(R) ((OH)(2)C6H2(SO3Na)(2)) during the sol-gel process was studied, aiming to obtain high performance membranes. Colloidal suspensions were prepared by hydrolyzing SnCl4.5H(2)O aqueous solution with NH4OH in presence of Tiron(R). The effect of the amount of Tiro(R) (from I to 20 wt.%) on the structural features of nanoparticles, powder redispersability and particle-solution interface properties was investigated by X-ray powder diffraction (XRPD), extended X-ray absorption fine structure (EXAFS), quasi-elastic light scattering and electrophoretic mobility measurements. XRPD and EXAFS results showed that the addition of Tiron(R) up to 20 wt.% to colloidal suspensions does not affect the crystallite size of SnO2 primary particles, determined around 2-3 nm. This value is comparable to the hydrodynamic size measured after redispersion of powder prepared with amount of Tiro(R) higher than 7.5 wt.%, indicating the absence of condensation reactions between primary particles after the initial precipitation step. As a consequence the powder with amount of Tiron(R) > 7.5 wt.%, can be fully redispersed in aqueous solution at pH greater than or equal to I I until a nanoparticle concentration of 6 vol.%. The electrophoresis measurements showed a decrease of the isoelectric point by increasing the amount of grafted Tiron(R) at the SnO2 nanoparticle surface, resulting in negatively charged particle-solution interface in all the studied pH range (2-11). These features govern the gelation process favoring the preparation of crack-free SnO2 supported membranes. The control exercised by Tiron(R) modifying agent in the aggregation process allows the fine-tuning of the porosity, from 0.124 to 0.065 cm(3) g(-1), and mean pore size, from 6.4 to 1.9 nm, as the amount of grafted molecules increases from 0 to 10 wt.%. In consequence, the membrane cut-off determined by filtration of polyethylene glycol standard solutions can be screened from 1500 to 3500 g mol(-1). (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
The ESR spectrum of CuCl2 adsorbed onto a silica gel surface chemically modified with the benzimidazole molecule showed that the surface complex has an octahedral symmetry with tetragonal distortion. The measured ESR parameters were g(parallel to) = 2.287, g(perpendicular to) = 2.062, A(parallel to) = 153 G and superhyperfine splitting A(N) = 15 G. The fit of the theoretical expressions to the experimental data was very reasonable. The effective spin orbit coupling constant for Cu2+ was reduced from its normal free ion value of lambda = -828 cm(-1) by as much as 30%. This reduction of lambda is normal in the solid state and in frozen solution complexes.
Resumo:
The interactions governing adsorption of layer-by-layer (LBL) films from an azopolymer, PS-119(R), and poly(allylamine hydrochloride) (PAH) have been controlled by modifying the pH of the solutions used to form the films. The thickness per bilayer was varied by one order of magnitude, from 10 to 240 A, as the pH changed from 4 to 10. Thick layers were formed at higher pHs because in this case the PAH is only partially charged adopting a loopy conformation. This change in molecular conformation caused the kinetics of isomerization and mass transport to be much slower than at lower pHs. The writing time defined as the time to achieve 50% of maximum birefringence dropped from 110 to 18 min for films prepared from solutions with pH 10 and pH 4, respectively. This decrease is probably due to the higher free volume for isomerization in the films prepared at lower pHs, in which PAH molecules are less coiled than at higher pHs. For the same reason, the rate of inscription of surface-relief gratings with an interference pattern of p-polarized light was also much slower at higher pHs. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The nature of the protective film formed by benzotriazole (BTAH) on the surface of the 90/10 CuNi alloy in deaerated 0.5 mol L-1 H2SO4 solution containing Fe(III) ions as oxidant was investigated by weight-loss, calorimetric measurements, and by surface-enhanced Raman spectroscopy (SERS). The SERS measurements show that the protective film is composed by the [Cu(I)BTA](n), polymeric complex and that the BTAH molecules are also adsorbed on the electrode surface. A modification of the BET isotherm for adsorption of gases ill solids is proposed to describe the experimental results obtained from weight-loss experiments that suggest an adsorption in multilayers. Electrochemical studies of copper and nickel in 0.5 mol L-1 H2SO4 in presence and absence of BTAH have also been made as an aid to interpret the results. The calculated adsorption free energy of the cuprous benzotriazolate on the surface of the alloy is in accordance with the value for pure copper. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)