993 resultados para Flagella (Microbiology)
Resumo:
The aim of this investigation was to determine the persistence of biofilm-associated antibiotic resistance developed by methicillin-sensitive Staphylococcus aureus (MSSA), of different capsular types, during biofilm formation. Because of superiority of the tissue culture plate (TCP) over the Congo Red Agar (CRA) method for measuring biofilm formation, it was used to determine the persistence of the antibiotic resistance developed by the isolates in biofilms. The antibiotic resistance was found to persist for 3-4 wk post-propagation as planktonic subcultures. Interestingly, some strains even developed resistance to vancomycin and/or teicoplanin. However, no association of either biofilm formation or persistent antibiotic resistance with the major capsular phenotype was observed. These observations highlight the potential significance of (a) determining the antibiograms of S. aureus subcultured from biofilms developed in vitro using the TCP method as well as from planktonic cultures for formulation of an optimal therapeutic strategy, and (b) continuing to identify predominant non-capsular antigens contributing to biofilm formation, regardless of the capsular phenotype for the development of an effective potentially broad-spectrum vaccine for prevention of bovine mastitis caused by S. aureus.
Resumo:
A mono-oxygenase catalysing the conversion of 2-ethyl-4-thioisonicotinamide (ethionamide) into its sulphoxide was purified from guinea-pig liver homogenates. The enzyme required stoicheiometric amounts of oxygen and NADPH for the sulphoxidation reaction. The purified protein is homogeneous by electrophoretic, antigenic and chromatographic criteria. The enzyme has mol.wt. 85000 and it contains 1g-atom of iron and 1mol of FAD per mol, but not cytochrome P-450. The enzyme shows maximal activity at pH7.4 in a number of different buffer systems and the Km values calculated for the substrate and NADPH are 6.5×10-5m and 2.8×10-5m respectively. The activation energy of the reaction was calculated to be 36kJ/mol. Under optimal conditions, the molecular activity of the enzyme (mol of substrate oxidized/min per mol of enzyme) is calculated to be 2.1. The oxygenase belongs to the class of general drug-metabolizing enzymes and it may act on different compounds which can undergo sulphoxidation. The mechanism of sulphoxidation was shown to be mediated by superoxide anions.
Resumo:
Three strains ofMadurella mycetomi, two ofM. grisea, and two ofRhinocladiella mansonii have been studied for ossible differences in growth requirements which might be used for distinguishing these species. Under the experimental conditions, an incubation temperature of 37C suitedM. mycetomi about as well as 30C.R. mansonii grew less well at 37C than at 30C, andM. grisea did not grow at the higher temperature. M. grisea andR. mansonii further differed fromM. mycetomi in that they required thiamine for growth. The pH tolerance of all the strains was very wide. Asparagine and potassium nitrate were readily utilized by all the strains, but ammonium salts were not. Urea was poorly used byM. mycetomi; the other species did not use it. A possible relationship ofM. grisea andR. mansonii is discusse
Resumo:
Henipaviruses cause fatal infection in humans and domestic animals. Transmission from fruit bats, the wildlife reservoirs of henipaviruses, is putatively driven (at least in part) by anthropogenic changes that alter host ecology. Human and domestic animal fatalities occur regularly in Asia and Australia, but recent findings suggest henipaviruses are present in bats across the Old World tropics. We review the application of the One Health approach to henipavirus research in three locations: Australia, Malaysia and Bangladesh. We propose that by recognising and addressing the complex interaction among human, domestic animal and wildlife systems, research within the One Health paradigm will be more successful in mitigating future human and domestic animal deaths from henipavirus infection than alternative single-discipline approaches. © Springer-Verlag Berlin Heidelberg 2013.
Resumo:
The Florida manatee, Trichechus manatus latirostris, is a hindgut-fermenting herbivore. In winter, manatees migrate to warm water overwintering sites where they undergo dietary shifts and may suffer from cold-induced stress. Given these seasonally induced changes in diet, the present study aimed to examine variation in the hindgut bacterial communities of wild manatees overwintering at Crystal River, west Florida. Faeces were sampled from 36 manatees of known sex and body size in early winter when manatees were newly arrived and then in mid-winter and late winter when diet had probably changed and environmental stress may have increased. Concentrations of faecal cortisol metabolite, an indicator of a stress response, were measured by enzyme immunoassay. Using 454-pyrosequencing, 2027 bacterial operational taxonomic units were identified in manatee faeces following amplicon pyrosequencing of the 16S rRNA gene V3/V4 region. Classified sequences were assigned to eight previously described bacterial phyla; only 0.36% of sequences could not be classified to phylum level. Five core phyla were identified in all samples. The majority (96.8%) of sequences were classified as Firmicutes (77.3 ± 11.1% of total sequences) or Bacteroidetes (19.5 ± 10.6%). Alpha-diversity measures trended towards higher diversity of hindgut microbiota in manatees in mid-winter compared to early and late winter. Beta-diversity measures, analysed through permanova, also indicated significant differences in bacterial communities based on the season.
Resumo:
Hydroxylated cytokinin, 2-methylthio-N6-(4-hydroxy-3-methylbut-2-enyl) adenosine, was found in the tRNA of Azotobacter vinelandii. This cytokinin had the trans configuration, unlike the cis configuration reported for that from other bacteria. Culture-condition-dependent changes in the content of this thiocytokinin and a few other thionucleosides in the tRNA of this bacterium have been observed.
Resumo:
An efficient in vitro amino acid-incorporating system from Mycobacterium tuberculosis H37Rv was standardized. Ribonucleic acid (RNA) isolated from phage-infected M. smegmatis cells served as natural messenger RNA and directed the incorporation of 14C-amino acids into protein. The effects of various antitubercular drugs and “known inhibitors” of protein synthesis on amino acid incorporation were studied. Antibiotics like chloramphenicol and tetracycline inhibited mycobacterial protein synthesis, though they failed to prevent the growth of the organism. This failure was shown to be due to the impermeability of mycobacteria to these drugs by use of “membrane-active” agents along with the antibiotics in growth inhibition studies. Several independent streptomycin-resistant mutants of M. tuberculosis H37Rv were isolated. Streptomycin inhibited the incorporation of 14C-amino acids into proteins by whole cells of a streptomycin-susceptible strain by more than 90%, whereas very little or no inhibition was observed in either high-level or low-level streptomycin-resistant strains.
Resumo:
The transport of glucose and α-methyl glucoside into the fat body of the silkworm, Bombyx mori L., has been studied. Glucose is transported into the tissue by a mechanism similar to facilitated diffusion and α-methyl glucoside by a diffusion process. The uptake of these sugars is neither energy dependent nor coupled to a phosphotransferase system.
Resumo:
The antitumour protein from the α-endotoxin of Bacillus thuringiensis var. thuringiensis has been purified, crystallized and partially characterized. The same protein also shows the insecticidal activity. According to amino acid analysis it is an acidic protein with a molecular weight of approx. 13 000.
Resumo:
C6H11o9P2-.Ba2+.7H2o, M, = 521.5, is monoclinic, space group P21, a = 11.881 (4), b = 8.616 (5), c = 8.350 (4) A,B = 102.95 (3)0, Z = 2, U = 833.0 A 3, d m = 2.09, d c = 2.08 Mg m -3, F(000) = 516. Mo Ka (u = 0.034 mm -1) intensity data. R is 0.068 for 1603 reflections. Of the two endocyclic C-O bonds in the glucose ring, C(5)-O(5) [1.463 (23)] is longer than C(1)-O(5) [1.395 (23)A]. The pyranose sugar ring takes a 4C1 chair conformation. The Cremer-Pople puckering parameters are, 0 = 6.69 o, Q = 0.619 A and 0 = 263.7o. The conformation about the exocyclic C(5)-C(6) bond is gauche-gauche, in contrast to gauche-trans observed in the structure of glucose 1-phosphate. The phosphate ester bond, P-O(6), is 1.61 (1)A. It is similar in length to the 'high-energy' P~O bond in phosphoenolpyruvate. The Ba 2÷ ion is surrounded by nine O atoms within a distance of 2.95 A, of which seven are from water molecules. There is an intramolecular hydrogen bond between the sugar hydroxyl 0(4) and phosphate oxygen O(12).
Resumo:
Campylobacter is an important food borne pathogen, mainly associated with poultry. A lack of through-chain quantitative Campylobacter data has been highlighted within quantitative risk assessments. The aim of this study was to quantitatively and qualitatively measure Campylobacter and Escherichia coli concentration on chicken carcasses through poultry slaughter. Chickens (n = 240) were sampled from each of four flocks along the processing chain, before scald, after scald, before chill, after chill, after packaging and from individual caeca. The overall prevalence of Campylobacter after packaging was 83% with a median concentration of 0.8 log10 CFU/mL. The processing points of scalding and chilling had significant mean reductions of both Campylobacter (1.8 and 2.9 log10 CFU/carcase) and E. coli (1.3 and 2.5 log10 CFU/carcase). The concentration of E. coli and Campylobacter was significantly correlated throughout processing indicating that E. coli may be a useful indicator organism for reductions in Campylobacter concentration. The carriage of species varied between flocks, with two flocks dominated by Campylobacter coli and two flocks dominated by Campylobacter jejuni. Current processing practices can lead to significant reductions in the concentration of Campylobacter on carcasses. Further understanding of the variable effect of processing on Campylobacter and the survival of specific genotypes may enable more targeted interventions to reduce the concentration of this poultry associated pathogen.
Resumo:
The aim of this study was to examine the antimicrobial susceptibility of 97 Haemophilus parasuis cultured from Australian pigs. As there is no existing standard antimicrobial susceptibility technique available for H. parasuis, methods utilising the supplemented media, BA/SN for disc diffusion and test medium broth (TMB) for a microdilution technique, were initially evaluated with the reference strains recommended by the Clinical and Laboratory Standards Institute. The results of the media evaluation suggested that BA/SN and TMB can be used as suitable media for susceptibility testing of H. parasuis. The proposed microdilution technique was then used with 97 H. parasuis isolates and nine antimicrobial agents. The study found that Australian isolates showed elevated minimum inhibitory concentrations (MICs) for ampicillin (1%), penicillin (2%), erythromycin (7%), tulathromycin (9%), tilmicosin (22%), tetracycline (31%) and trimethoprim-sulfamethoxazole (40%). This study has described potential antimicrobial susceptibility methods for H. parasuis and has detected a low percentage of Australian H. parasuis isolates with elevated antimicrobial MICs.
Resumo:
Mycobacterium tuberculosis H37Rv possesses an enzyme (referred to as ‘Y enzyme’) which catalyses in the presence of INH and NAD, the formation of a product, which turns yellow on acidification. The requirements for the reaction, such as enzyme concentration, INH concentration, etc., have been standardized. The substrate specificity of the enzyme with respect to INH and NAD has been determined. The reaction is specific for the INH-sensitive strain and is totally absent in INH-resistant strains. Furthermore, the ‘Y enzyme’ shows some characteristic features of a peroxidase in its requirement for oxygen and sensitivity to inhibition by various reagents. The requirements of this enzyme which is involved in the action of isoniazid inM. tuberculosis H37Rv is described for the first time.
Resumo:
The presence of lipids has been demonstrated in mycobacteriophage 13. The total lipid was composed of 69% phospholipids and 31% neutral lipids. More than two-thirds of phospholipids present in the phage were synthesized in the host prior to infection. The fatty acid composition of the phage differed markedly from that of its host, both in chain length and the degree of saturation. The phage lipid was mostly composed of saturated fatty acids of which more than 50% were short chain fatty acids. Changes in growth temperatures reflected variations in fatty acid composition, characteristic of the phage, and which were distinctly different from those of the host. Electron microscopic observations revealed that the phage has a membranous bilayer structure. The presence of lipids may facilitate the phage-host interaction especially in lipid-rich organisms like mycobacteria.