951 resultados para Finite strip method
Resumo:
在黄土高原水蚀风蚀交错地区,碎石的存在影响着土壤的水力学特性,因此研究土石混合介质的渗流运动对该地区的植被恢复建设具有重要的指导意义。虽然用有限元法分析地下水渗流的工作很多,但对土石混合介质而言,由于有限元法的解题规模迅速增加,其研究甚少。本模型采用子域法矩形单元,假定土石体中石块含量增加不影响土的孔隙率且石块不透水分析了土石混合介质中的渗流过程。结果表明,影响土石混合介质饱和导水率的主要因素是土石介质的含石率;石块的大小基本不影响混合介质饱和导水率;石块分布方式增加水流路径时,会影响混合介质饱和导水率。这一数值分析结论与土石体渗流问题的部分理论结果和试验结果吻合良好。本模型子域法计算效率高,结果较准确,可用于较大规模的土石混合介质渗流分析,还可推广用于土石混合介质的三维分析和多级子域法有限元技术以获得更大规模的解题效果。
Resumo:
The propagation characteristics of fiexural waves in periodic grid structures designed with the idea of phononic crystals are investigated by combining the Bloch theorem with the finite element method. This combined analysis yields phase constant surfaces, which predict the location and the extension of band gaps, as well as the directions and the regions of wave propagation at assigned frequencies. The predictions are validated by computation and experimental analysis of the harmonic responses of a finite structure with 11 × 11 unit cells. The fiexural wave is localized at the point of excitation in band gaps, while the directional behaviour occurs at particular frequencies in pass bands. These studies provide guidelines to designing periodic structures for vibration attenuation.
Resumo:
A new fabrication technology for three-dimensionally buried silica on silicon optical waveguide based on deep etching and thermal oxidation is presented. Using this method, a silicon layer is left at the side of waveguide. The stress distribution and effective refractive index are calculated by using finite element method and finite different beam propagation method, respectively. The results indicate that the stress of silica on silicon optical waveguide fabricated by this method can be matched in parallel and vertical directions and stress birefringence can be effectively reduced due to the side-silicon layer.
Resumo:
目前全球缺水、水污染、洪涝灾害以及水土流失仍然非常严重,尤其在我国北方地区。流域水文模型可用来进行不同需水管理的情景分析,为解决我国水问题提供科学依据。分布式水文模型是流域水文模型的发展方向,具有显著特点:1)应用前景广泛,不仅可以模拟流域水文过程,还可以协助模拟泥沙或污染物的运移过程,为水利工程设计、水土保持、环境保护等领域提供技术支持;2)能够预测流域土地利用或气候变化下的流域水文响应过程变化,为管理部门提供决策支持;3)模型所需要的参数全部具有物理意义,可通过实际测量确定,适合模拟实测系列较短或是无观测流域的水文过程;4)对于目前国际水文界的前沿问题—水文尺度转换提供了一种有效的解决途径。 然而分布式水文模型还不完善,如1)真实性问题。对一些水文过程和边界条件还不确定。2)尺度转换问题。目前很少考虑尺度对参数有效性的影响。3)检验问题。还无法判断对有些难以测量的水文状态变量的模拟正确与否。4)计算时间和数据存储的问题。有些分布式水文模型虽然具有很强的水文物理基础和完善的模型结构,但是计算时间过长和(或)数据存储过大,难以应用。上述问题的核心就是对分布式水文模型的核心—单元水文模型的研究不够,需要为进一步完善单元水文模型进行研究。 本文采用饱和入渗理论、Saint-Venant方程、Richards方程、Penman-Monteith方程等等构建了以有限差分法求解的适用于森林流域的单元水文模型,并通过实验室模拟试验和坡地径流场资料进行了验证,主要结论为: 通过不同坡度和不同雨强下的室内坡面产汇流实验模拟,表明:该模型模拟的坡面流和壤中流过程与实测过程基本一致,峰现时间、径流历时、峰值流量、出流总量模拟值与实测值的相对误差均较小,基本小于10%。模型的模拟精度较高,实用性较强,为深入研究壤中流机制和改进流域降雨-径流模型提供了理论依据。 通过坡地径流观测场实测资料的验证,表明:该模型模拟的坡面流过程精度较高,累计流量的精度更高于小时过程的精度,离差系数、效率系数、确定系数均较理想,具有应用价值,有助于改善分布式水文模型在森林流域的模拟效果。
Resumo:
We have proposed a novel type of photonic crystal fiber (PCF) with low dispersion and high nonlinearity for four-wave mixing. This type of fiber is composed of a solid silica core and a cladding with a squeezed hexagonal lattice elliptical airhole along the fiber length. Its dispersion and nonlinearity coefficient are investigated simultaneously by using the full vectorial finite element method. Numerical results show that the proposed highly nonlinear low-dispersion fiber has a total dispersion as low as +/- 2.5 ps nm(-1) km(-1) over an ultrabroad wavelength range from 1.43 to 1.8 mu m, and the corresponding nonlinearity coefficient and birefringence are about 150 W-1 km(-1) and 2.5 x 10(-3) at 1.55 mu m, respectively. The proposed PCF with low ultraflattened dispersion, high nonlinearity, and high birefringence can have important application in four-wave mixing. (C) 2010 Optical Society of America
Resumo:
A highly birefringent hollow-core photonic bandgap fiber based on Topas cyclic olefin copolymer is designed. The rhombic hollow-core with rounded corners is formed by omitting four central air holes of the cladding structure. The guided modes, birefringence and confinement loss of the fiber are investigated by using the full-vector finite element method. A high phase birefringence of the order of 10(-3), a group birefringence of the order of 10(-2) and confinement loss less than 0.1 dB/km are obtained at the central wavelength (1.55 mu m) range of the bandgap for fiber with seven rings of air holes in the cladding region. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
High birefringence induced by rhombic air-hole photonic crystal fibers (PCFs) is numerically analyzed by using the finite-element method. The birefringence of a few kinds of PCFs was investigated with different parameters related to rhombic holes, including the rhombic-hole shape, size, and spacing. It was found that the birefringence of the proposed rhombic-hole PCF in this study is relatively larger than that of an elliptical-hole PCF with the same air-filling fraction (f = 0.0375) when the ratio of the rhombic-hole diagonal length is equal to the elliptical-hole ellipticity. (C) 2010 Optical Society of America
Resumo:
The improved mechanical properties of surface nano-crystallized graded materials produced by surface severe plastic deformation ((SPD)-P-2) are generally owing to the effects of the refined structure, work-hardened region and compressive residual stress. However, during the (SPD)-P-2 process, residual stress is produced simultaneously with work-hardened region, the individual contribution of these two factors to the improved mechanical properties remains unclear. Numerical simulations are carried out in order to answer this question. It is found that work hardening predominates in improving the yield strength and the ultimate tensile strength of the surface nano-crystallized graded materials, while the influence of the residual stress mainly emerges at the initial stage of deformation and decreases the apparent elastic modulus of the surface nano-crystallized graded materials, which agrees well with the experimental results. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
A peeling model is proposed to analyze the peeling properties of bio-mimetic nano-films using the finite element method (FEM) and theoretical approach. The influences of the nano-film's adhesion length, thickness, elastic modulus, roughness and peeling angle on the peeling force were considered as well as the effect of the viscoelastic behavior. It has been found that the effective adhesion length, at which the peeling force attained maximum, was much smaller than the real length of nano-films; and the shear force dominated in the case of smaller peeling angles, whereas, the normal force dominated at larger peeling angles. The total peeling force decreased with an increasing peeling angle. Two limiting values of the peeling-off force can be found in the viscoelastic model, which corresponds to the smaller and larger loading rate cases. The effects of nano-film thickness and Young's modulus on peeling behaviors were also discussed. The results obtained are helpful for understanding the micro-adhesion mechanisms of biological systems, such as geckos. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The now and heat transfer characteristics of China No. 3 aviation kerosene in a heated curved tube under supercritical pressure are numerically investigated by a finite volume method. A two-layer turbulence model, consisting of the RNG k-epsilon two-equation model and the Wolfstein one-equation model, is used for the simulation of turbulence. A 10-species kerosene surrogate model and the NIST Supertrapp software are applied to obtain the thermophysical and transport properties of the kerosene at various temperature under a supercritical pressure of 4 MPa. The large variation of thermophysical properties of the kerosene at the supercritical pressure make the flow and heat transfer more complicated, especially under the effects of buoyancy and centrifugal force. The centrifugal force enhances the heat transfer, but also increases the friction factors. The rise of the velocity caused by the variation of the density does not enhance the effects of the centrifugal force when the curvature ratios are less than 0.05. On the contrary, the variation of the density increases the effects of the buoyancy. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The discretization size is limited by the sampling theorem, and the limit is one half of the wavelength of the highest frequency of the problem. However, one half of the wavelength is an ideal value. In general, the discretization size that can ensure the accuracy of the simulation is much smaller than this value in the traditional finite element method. The possible reason of this phenomenon is analyzed in this paper, and an efficient method is given to improve the simulation accuracy.
Resumo:
The initiation of pipeline spanning involves the coupling between the flow over the pipeline and the seepage-flow in the soil underneath the pipeline. The pipeline spanning initiation is experimentally observed and discussed in this article. It is qualitatively indicated that the pressure-drop induced soil seepage failure is the predominant cause for pipeline spanning initiation. A flow-pipe-seepage sequential coupling Finite Element Method (FEM) model is proposed to simulate the coupling between the water flow-field and the soil seepage-field. A critical hydraulic gradient is obtained for oblique seepage failure of the sand in the direction tangent to the pipe. Parametric study is performed to investigate the effects of inflow velocity, pipe embedment on the pressure-drop, and the effects of soil internal friction angle and pipe embedment-to-diameter ratio on the critical flow velocity for pipeline spanning initiation. It is indicated that the dimensionless critical flow velocity changes approximately linearly with the soil internal friction angle for the submarine pipeline partially-embedded in a sandy seabed.
Resumo:
Fiber Bragg grating (FBG) sensor for monitoring the electromagnetic strain in a low temperature superconducting (LTS) magnet was studied. Before used to LTS magnet strain sensing, the strain response of the sensor with 1.54-mu m wavelength at liquid helium was experimentally studied. It was found that the wavelength shift showed good linearity with longitudinal applied loads and the strain sensitivity is constant at 4.2 K. And then, the hoop strain measurement of a LTS magnet was carried out on the basis of measured results. Furthermore, the finite element method (FEM) was used to simulate the magnet strain. The difference between the experimental and numerical analysis results is very small.
Resumo:
The slender axis-symmetric submarine body moving in the vertical plane is the object of our investigation. A coupling model is developed where displacements of a solid body as a Euler beam (consisting of rigid motions and elastic deformations) and fluid pressures are employed as basic independent variables, including the interaction between hydrodynamic forces and structure dynamic forces. Firstly the hydrodynamic forces, depending on and conversely influencing body motions, are taken into account as the governing equations. The expressions of fluid pressure are derived based on the potential theory. The characteristics of fluid pressure, including its components, distribution and effect on structure dynamics, are analyzed. Then the coupling model is solved numerically by means of a finite element method (FEM). This avoids the complicacy, combining CFD (fluid) and FEM (structure), of direct numerical simulation, and allows the body with a non-strict ideal shape so as to be more suitable for practical engineering. An illustrative example is given in which the hydroelastic dynamic characteristics, natural frequencies and modes of a submarine body are analyzed and compared with experimental results. Satisfactory agreement is observed and the model presented in this paper is shown to be valid.
Resumo:
通过对现代数值试井技术主要使用的数值计算方法优缺点的对比分析,说明了有限体积法求解煤层气扩散方程的优势,确定采用有限体积法对煤层气井的数值试井模型进行求解。建立了圆形区域煤层的一维径向流动和二维平面流动的煤层气井稳定解吸数值试井模型,推导出了相应的有限体积法离散格式。通过对求解结果的分析,详细讨论了解吸系数、边界距离、边界性质、组合系数等因素对试井理论曲线的影响。该研究成果的理论曲线特征明显地反映了不同条件下煤层气井的压力变化规律,说明了有限体积法适合于煤层气井的数值试井研究。该研究成果拓展了煤层气数值试井模型求解的计算方法,对煤层气数值试井的发展有积极的指导意义。