921 resultados para Fiber Reinforced Plastic


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Creep properties of QE22 magnesium based alloy and composites reinforced with 20 volume percent of short-fibers - Maftech (R), Saffil (R) or Supertech (R), were evaluated using the impression creep test. In the impression creep test, a load is applied with the help of a cylindrical tungsten carbide indenter of 1 mm diameter. This has advantages over conventional creep testing in terms of small specimen size requirement and simple machining. Depth of impression is recorded with time and steady state strain rate is obtained from the slope of the secondary strain (depth of impression divided by indenter diameter) vs. time plot. The results are compared with the creep obtained from conventional creep performed in tension on the same materials earlier. Microstructural examination of the plastically deformed regions is carried out to explain creep behaviour of these composites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a reinforced soil bed system reinforcement layer is usually placed with or without end anchorage. Since soil is weak in tension reinforcement develop tension under the applied load or the displacement of the footing. This tensile force is distributed along the length of the reinforcement subjected to the end condition. The reinforccement tension helps in distributing the load over a wider area, and becomes more effective at large induced settlements. As a result, vertical componenent of tensile force generated becomes effective in reducing applied load. However, very few studies to quantify the tensile force along the reinforcement have been reported in the literature. In this paper an attempt has been made to obtain the true nature of tensile force distribution along the reinforcement. For a reinforced soil bed below a strip footing this paper brings out induced tensile force distribution along the reinforcement at different load levels and for different types of reinforcements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interrogation techniques for fiber Bragg grating sensor arrays need particular attention in the case of structural health monitoring applications involving dynamic strain measurement. Typically the performance of the sensing system is dependent on both the sensor type and the interrogation method employed. A novel interrogation system is proposed here that consists of different interrogation units for each sensor in the array, each unit comprising of a circulator, chirped grating and a Mach-Zehnder interferometer. We present an analysis that consists of tracking the spectral changes as the light passes through various elements in the interrogation system. This is expected to help in the optimization of sensor and interrogation elements leading to improved performance of the health monitoring system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High temperature bonded interface indentation experiments are carried out on a Zr based bulk metallic glass (BMG) to examine the plastic deformation characteristics in subsurface deformation zone under a Vickers indenter. The results show that the shear bands are semi-circular in shape and propagate in radial direction. At all temperatures the inter-band spacing along the indentation axis is found to increase with increasing distance from the indenter tip. The average shear band spacing monotonically increases with temperature whereas the shear band induced plastic deformation zone is invariant with temperature. These observations are able to explain the increase in pressure sensitive plastic flow of BMGs with temperature. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fiber Bragg grating (FBG) and Long Period Grating (LPG) chemical sensors are one of the most exciting developments in the field of optical fiber sensors. In this paper we have proposed a simple and effective chemical sensor based on FBG and LPG techniques for detecting the traces of cadmium (Cd) in drinking water at ppm level. The sensitiveness of these two has been compared. Also, these results have been compared with the results obtained by sophisticated spectroscopic atomic absorption and emission spectrometer instruments. For proper designing of FBG to act as a concentration sensor, the cladding region of the grating has been etched using HF solution. We have characterized the FBG concentration sensor sensitivities for different solutions of Cd concentrations varying from 0.01 ppm to 0.04 ppm and observed reflected spectrum in FBG and transmitted spectrum in LPG using Optical Spectrum Analyzer. Proper reagents have been used in the solutions for detection of the Cd species. The overall shift in wavelength is 10 nm in case of LPG and the shift of Bragg wavelength is 0.07 nm in case of FBG for 0.01-0.04 ppm concentrations. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acoustic emission (AE) testing is a well-known method for damage identification of various concrete structures including bridges. This article presents a method to assess damage in reinforced concrete (RC) bridge beams subjected to incremental cyclic loading. The specifications in the standard NDIS-2421 were used to classify the damage in RC bridge beams. Earlier researchers classified the damage occurring in bridge beams by using crack mouth opening displacement (CMOD) and AE released and proposed a standard (NDIS-2421: the Japanese Society for NonDestructive Inspection). In general, multiple cracks take place in RC beams under bending; therefore, utilisation of CMOD for crack detection may not be appropriate. In the present study, the damage in RC beams is classified by using the AE released, deflection, strains in steel and concrete, because the measurement of the strains in steel and concrete is easy and the codes of practice are specified for different limit states (IS-456:2000). The observations made in the present experimental study have some important practical applications in assessing the state of damage of concrete structural members.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Results from elasto-plastic numerical simulations of jointed rocks using both the equivalent continuum and discrete continuum approaches are presented, and are compared with experimental measurements. Initially triaxial compression tests on different types of rocks with wide variation in the uniaxial compressive strength are simulated using both the approaches and the results are compared. The applicability and relative merits and limitations of both the approaches for the simulation of jointed rocks are discussed. It is observed that both the approaches are reasonably good in predicting the real response. However, the equivalent continuum approach has predicted somewhat higher stiffness values at low strains. Considering the modelling effort involved in case of discrete continuum approach, for problems with complex geometry, it is suggested that a proper equivalent continuum model can be used, without compromising much on the accuracy of the results. Then the numerical analysis of a tunnel in Japan is taken up using the continuum approach. The deformations predicted are compared well against the field measurements and the predictions from discontinuum analysis. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Leaves and leaf sheath of banana and areca husk (Areca catechu) constitute an important component of urban solid waste (USW) in India which are difficult to degrade under normal windrow composting conditions. A successful method of anaerobic digestion built around the fermentation properties of these feedstock has been evolved which uses no moving parts, pretreatment or energy input while enabling recovery of four products: fiber, biogas, compost and pest repellent. An SRT of 27 d and 35 d was found to be optimum for fiber recovery for banana leaf and areca husk, respectively. Banana leaf showed a degradation pattern different from other leaves with slow pectin-1 degradation (80%) and 40% lignin removal in 27 d SRT. Areca husk however, showed a degradation pattern similar to other plant biomass. Mass recovery levels for banana leaf were fiber-20%, biogas-70% (400 ml/g TS) and compost-10%. For areca husk recovery was fiber-50%, biogas-45% (250 ml/g TS) and compost-5%. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Metallic and other type of coatings on fiber Bragg grating (FBG) sensors alter their sensitivity with thermal and mechanical stress while protecting the fragile optical fiber in harsh sensing surroundings. The behavior of the coated materials is unique in their response to thermal and mechanical stress depending on the thickness and the mode of coating. The thermal stress during the coating affects the temperature sensitivity of FBG sensors. We have explored the thermal response of FBGs coated with Al and Pb to an average thickness of 80 nm using flash evaporation technique where the FBG sensor is mounted in a region at room temperature in an evacuated chamber having a pressure of 10(6) Torr which will minimize any thermal stress during the coating process. The coating thickness is chosen in the nanometer region with the aim to study thermal behavior of nanocoatings and their effect on FBG sensitivity. The sensitivity of FBGs is evaluated from the wavelengths recorded using an optical sensing interrogator sm 130 (Micron Optics) from room temperature to 300 degrees C both during heating and cooling. It is observed that the sensitivity of the metal coated fibers is better than the reference FBG with no coating for the entire range of temperature. For a coating thickness of 80 nm, Al coated FBG is more sensitive than the one coated with Pb up to 170 degrees C and it reverses at higher temperatures. This point is identified as a reversible phase transition in Pb monolayers as the 2-dimensional aspects of the metal layers are dominant in the nanocoatings of Pb. On cooling, the phase transition reverses and the FBGs return to the original state and for repeated cycles of heating and cooling the same pattern is observed. Thus the FBG functions as a sensor of the phase transitions of the coatings also. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present work proposes a new sensing methodology, which uses Fiber Bragg Gratings (FBGs) to measure in vivo the surface strain and strain rate on calf muscles while performing certain exercises. Two simple exercises, namely ankle dorsi-flexion and ankle plantar-flexion, have been considered and the strain induced on the medial head of the gastrocnemius muscle while performing these exercises has been monitored. The real time strain generated has been recorded and the results are compared with those obtained using a commercial Color Doppler Ultrasound (CDU) system. It is found that the proposed sensing methodology is promising for surface strain measurements in biomechanical applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

From the analysis of experimentally observed variations in surface strains with loading in reinforced concrete beams, it is noted that there is a need to consider the evolution of strains (with loading) as a stochastic process. Use of Markov Chains for modeling stochastic evolution of strains with loading in reinforced concrete flexural beams is studied in this paper. A simple, yet practically useful, bi-level homogeneous Gaussian Markov Chain (BLHGMC) model is proposed for determining the state of strain in reinforced concrete beams. The BLHGMC model will be useful for predicting behavior/response of reinforced concrete beams leading to more rational design.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents an experimental study on damage assessment of reinforced concrete (RC) beams subjected to incremental cyclic loading. During testing acoustic emissions (AEs) were recorded. The analysis of the AE released was carried out by using parameters relaxation ratio, load ratio and calm ratio. Digital image correlation (DIC) technique and tracking with available MATLAB program were used to measure the displacement and surface strains in concrete. Earlier researchers classified the damage in RC beams using Kaiser effect, crack mouth opening displacement and proposed a standard. In general (or in practical situations), multiple cracks occur in reinforced concrete beams. In the present study damage assessment in RC beams was studied according to different limit states specified by the code of practice IS-456:2000 and AE technique. Based on the two ratios namely load ratio and calm ratio and when the deflection reached approximately 85% of the maximum allowable deflection it was observed that the RC beams were heavily damaged. The combination of AE and DIC techniques has the potential to provide the state of damage in RC structures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the possibility of projecting low-dimensional chaos from spatiotemporal dynamics of a model for a kind of plastic instability observed under constant strain rate deformation conditions. We first discuss the relationship between the spatiotemporal patterns of the model reflected in the nature of dislocation bands and the nature of stress serrations. We show that at low applied strain rates, there is a one-to-one correspondence with the randomly nucleated isolated bursts of mobile dislocation density and the stress drops. We then show that the model equations are spatiotemporally chaotic by demonstrating the number of positive Lyapunov exponents and Lyapunov dimension scale with the system size at low and high strain rates. Using a modified algorithm for calculating correlation dimension density, we show that the stress-strain signals at low applied strain rates corresponding to spatially uncorrelated dislocation bands exhibit features of low-dimensional chaos. This is made quantitative by demonstrating that the model equations can be approximately reduced to space-independent model equations for the average dislocation densities, which is known to be low-dimensionally chaotic. However, the scaling regime for the correlation dimension shrinks with increasing applied strain rate due to increasing propensity for propagation of the dislocation bands.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Organic plastic crystalline soft matter ion conductors are interesting alternatives to liquid electrolytes in electrochemical storage devices such as Lithium-ion batteries. The solvent dynamics plays a major role in determining the ion transport in plastic crystalline ion conductors. We present here an analysis of the frequency-dependent ionic conductivity of succinonitrile-based plastic crystalline ion conductors at varying salt composition (0.005 to 1 M) and temperature (-20 to 60 degrees C) using time-temperature superposition principle (TTSP). The main motivation of the work has been to establish comprehensive insight into the ion transport mechanism from a single method viz, impedance spectroscopy rather than employing cluster of different characterization methods probing various length and time scales. The TTSP remarkably aids in explicit identification of the extent of the roles of solvent dynamics and ion-ion interactions on the effective conductivity of the orientationally disordered plastic crystalline ion conductors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper studies the effect of frequency of base shaking on the dynamic response of unreinforced and reinforced soil slopes through a series of shaking table tests. Slopes were constructed using clayey sand and geogrids were used for reinforcing the slopes. Two different slope angles 45 degrees and 60 degrees were used in tests and the quantity and location of reinforcement is varied in different tests. Acceleration of shaking is kept constant as 0.3 g in all the tests to maximize the response and the frequency of shaking was 2 Hz, 5 Hz and 7 Hz in different tests. The slope is instrumented with ultrasonic displacement sensors and accelerometers at different elevations. The response of different slopes is compared in terms of the deformation of the slope and acceleration amplifications measured at different elevations. It is observed that the displacements at all elevations increased with increase in frequency for all slopes, whereas the effect of frequency on acceleration amplifications is not significant for reinforced slopes. Results showed that the acceleration and displacement response is not increasing proportionately with the increase in the frequency, suggesting that the role of frequency in the seismic response is very important. Reinforced slopes showed lesser displacements compared to unreinforced slopes at all frequency levels. (C) 2012 Elsevier Ltd. All rights reserved.