990 resultados para Few mode fibre
Resumo:
ABSTRACT Healthy eating is associated with the consumption of fruits, which are notable for their beneficial effects on human health. The aim of this study was to evaluate the proximate composition, composition of fibers and components with antioxidant activity in soursops varieties Crioula, Lisa and Morada of physiological maturity (PM) and mature (M). The protein, lipid and moisture contents did not differ between soursop varieties, but the ash contents were higher in the Morada-PM (0.56%±0.03) and the Morada-M (0.82%±0.10) varieties. The Crioula-M variety showed higher levels of total dietary fibre (5.76%±0.12). The Lisa-M variety showed higher levels of insoluble dietary fibre (4.46%±0.00). The Lisa-M variety also showed a higher level of phenolic compounds (284.25 mg gallic acid/100 g of soursop pulp), differing significantly (p <0.05) from the Crioula-PM soursop (154.40 mg of gallic acid/100 g of soursop pulp). Under the DPPH• system, the soursops that showed highest antioxidant activity were the Crioula-M (EC50 of 156.40 g.g DPPH-1) and the Crioula-PM (EC50 of 162.41 g.g DPPH-1), which differed significantly from the Morada soursops. The results suggest that the consumption of soursops is useful for increasing concentrations of bioactive compounds and dietary fibre.
Resumo:
In this work, we investigate the influence of finite size on the recombinations dynamics of ZnO nanowires. We demonstrate that diameter as well as lenght of nanowires determine the lifetime of the neutral donor bound excitons. Our findings suggest that while the length is mainly responsible for different mode quality factors of the cavity-like nanowires, the diameter determines the influence of surface states as alternative recombinations channels for the optical modes trapped in the nanocavity. In addition, comparing nanowires grown using different catalyst we show that the surfaces states strongly depend on each precursor characteristics.
Resumo:
The development of nuclear hormone receptor antagonists that directly inhibit the association of the receptor with its essential coactivators would allow useful manipulation of nuclear hormone receptor signaling. We previously identified 3-(dibutylamino)-1-(4-hexylphenyl)-propan-1-one (DHPPA), an aromatic β-amino ketone that inhibits coactivator recruitment to thyroid hormone receptor β (TRβ), in a high-throughput screen. Initial evidence suggested that the aromatic β-enone 1-(4-hexylphenyl)-prop-2-en-1-one (HPPE), which alkylates a specific cysteine residue on the TRβ surface, is liberated from DHPPA. Nevertheless, aspects of the mechanism and specificity of action of DHPPA remained unclear. Here, we report an x-ray structure of TRβ with the inhibitor HPPE at 2.3-Å resolution. Unreacted HPPE is located at the interface that normally mediates binding between TRβ and its coactivator. Several lines of evidence, including experiments with TRβ mutants and mass spectroscopic analysis, showed that HPPE specifically alkylates cysteine residue 298 of TRβ, which is located near the activation function-2 pocket. We propose that this covalent adduct formation proceeds through a two-step mechanism: 1) β-elimination to form HPPE; and 2) a covalent bond slowly forms between HPPE and TRβ. DHPPA represents a novel class of potent TRβ antagonist, and its crystal structure suggests new ways to design antagonists that target the assembly of nuclear hormone receptor gene-regulatory complexes and block transcription.
Resumo:
Customers are more and more interested in the environmental impacts of the products they purchase. Different labels give the required environmental information to consumers and the labels might affect to the consuming decisions. The European Union has set a plan for sustainable consuming, which encourages industry and commerce to calculate carbon footprints for the products. A term “carbon footprint” means carbon dioxide emissions across the product lifecycle. In this thesis, carbon footprints are calculated for two different fibre-based packages. In the end, greenhouse gas emissions from fibre-package production are compared to greenhouse gas emissions from PET bottle production. The data for mill processes is exact and monitored in the mill. In addition, data was gathered from raw material and material suppliers, customers, official records, KCL-eco databases and literature. The data for PET bottle is sourced from literature. End-of-life operations affect greatly on the carbon footprint of a fibre-based package. The results show that the carbon footprint is smallest when used packages are recycled. Recycling saves also natural resources. If used packages are not recyclable for some reason, it is recommended to use them in energy production. Through waste incineration fossil fuels could be substituted and greenhouse gas emissions avoided.
Resumo:
Lactate has been shown to offer neuroprotection in several pathologic conditions. This beneficial effect has been attributed to its use as an alternative energy substrate. However, recent description of the expression of the HCA1 receptor for lactate in the central nervous system calls for reassessment of the mechanism by which lactate exerts its neuroprotective effects. Here, we show that HCA1 receptor expression is enhanced 24 hours after reperfusion in an middle cerebral artery occlusion stroke model, in the ischemic cortex. Interestingly, intravenous injection of L-lactate at reperfusion led to further enhancement of HCA1 receptor expression in the cortex and striatum. Using an in vitro oxygen-glucose deprivation model, we show that the HCA1 receptor agonist 3,5-dihydroxybenzoic acid reduces cell death. We also observed that D-lactate, a reputedly non-metabolizable substrate but partial HCA1 receptor agonist, also provided neuroprotection in both in vitro and in vivo ischemia models. Quite unexpectedly, we show D-lactate to be partly extracted and oxidized by the rodent brain. Finally, pyruvate offered neuroprotection in vitro whereas acetate was ineffective. Our data suggest that L- and D-lactate offer neuroprotection in ischemia most likely by acting as both an HCA1 receptor agonist for non-astrocytic (most likely neuronal) cells as well as an energy substrate.
Resumo:
1897 (A18).
Resumo:
Variante(s) de titre : Annuaire-tarif des journaux, revues et publications périodiques parus à Paris
Resumo:
Pro gradun tavoitteena oli löytää tärkeimmät seikat, jotka vaikuttavat kansainvälisen operaatiomuodon valintaan. Tutkimuskohteena olivat suomalaiset pienet tai keskisuuret tuotteistetut ohjelmistopalveluyritykset. Tutkimusmenetelmänä käytettiin kvalitatiivista tutkimusta sekä case-tutkimusta. Tutkimus koostui kahdesta osasta: teoreettinen osa sekä empiirinen kahden case yrityksen analyysi. Operaatiomuodon valintaan vaikuttavat tekijät jaettiin sisäisiin (yritys, tuote ja päätöksentekijä), ulkoisiin (ala ja maa) ja operaatiomuodon (kontrolli, riski, resurssit, joustavuus, tuotot ja kulut) tekijöihin. Teoreettisesti operaatiomuodon valinta on erittäin monimutkainen päätös ja sitä on tutkittu monelta kannalta. Tämä empiirinen tutkimus osoittaa, että yrityksen resurssit olivat tärkein vaikuttava tekijä molemmissa yrityksissä.
Resumo:
This study analyzes the capillarity and fibre-type distribution of six locomotory muscles of gulls. The morphological basis and the oxygen supply characteristics of the skeletal muscle of a species with a marked pattern of gliding flight are established, thus contributing to a better understanding of the physiology of a kind of flight with low energetic requirements. The four wing muscles studied (scapulotriceps, pectoralis, scapulohumeralis, and extensor metacarpi) exhibited higher percentages of fast oxidative glycolytic fibres (>70%) and lower percentages of slow oxidative fibres (<16%) than the muscles involved in nonflight locomotion (gastrocnemius and iliotibialis). Capillary densities ranged from 816 to 1,233 capillaries mm(-2), having the highest value in the pectoralis. In this muscle, the fast oxidative glycolytic fibres had moderate staining for succinate dehydrogenase and relatively large fibre sizes, as deduced from the low fibre densities (589-665 fibres mm(-2)). All these findings are seen as an adaptive response for gliding, when the wing is held outstretched by isometric contractions. The leg muscles studied included a considerable population of slow oxidative fibres (>14% in many regions), which suggests that they are adapted to postural activities. Regional variations in the relative distributions of fibre types in muscle gastrocnemius may reflect different functional demands placed on this muscle during terrestrial and aquatic locomotion. The predominance of oxidative fibres and capillary densities under 1,000 capillaries mm(-2) in leg muscles is probably a consequence of an adaptation for slow swimming and maintenance of the posture on land rather than for other locomotory capabilities, such as endurance or sprint activities.
Resumo:
Successful generation of high producing cell lines requires the generation of cell clones expressing the recombinant protein at high levels and the characterization of the clones' ability to maintain stable expression levels. The use of cis-acting epigenetic regulatory elements that improve this otherwise long and uncertain process has revolutionized recombinant protein production. Here we review and discuss new insights into the molecular mode of action of the matrix attachment regions (MARs) and ubiquitously-acting chromatin opening elements (UCOEs), i.e. cis-acting elements, and how these elements are being used to improve recombinant protein production. These elements can help maintain the chromatin environment of the transgene genomic integration locus in a transcriptionally favorable state, which increases the numbers of positive clones and the transgene expression levels. Moreover, the high producing clones tend to be more stable in long-term cultures even in the absence of selection pressure. Therefore, by increasing the probability of isolating a high producing clone, as well as by increasing transcription efficiency and stability, these elements can significantly reduce the time and cost required for producing large quantities of recombinant proteins.
Resumo:
Modelling the shoulder's musculature is challenging given its mechanical and geometric complexity. The use of the ideal fibre model to represent a muscle's line of action cannot always faithfully represent the mechanical effect of each muscle, leading to considerable differences between model-estimated and in vivo measured muscle activity. While the musculo-tendon force coordination problem has been extensively analysed in terms of the cost function, only few works have investigated the existence and sensitivity of solutions to fibre topology. The goal of this paper is to present an analysis of the solution set using the concepts of torque-feasible space (TFS) and wrench-feasible space (WFS) from cable-driven robotics. A shoulder model is presented and a simple musculo-tendon force coordination problem is defined. The ideal fibre model for representing muscles is reviewed and the TFS and WFS are defined, leading to the necessary and sufficient conditions for the existence of a solution. The shoulder model's TFS is analysed to explain the lack of anterior deltoid (DLTa) activity. Based on the analysis, a modification of the model's muscle fibre geometry is proposed. The performance with and without the modification is assessed by solving the musculo-tendon force coordination problem for quasi-static abduction in the scapular plane. After the proposed modification, the DLTa reaches 20% of activation.
Resumo:
Lactate has been shown to offer neuroprotection in several pathologic conditions. This beneficial effect has been attributed to its use as an alternative energy substrate. However, recent description of the expression of the HCA1 receptor for lactate in the central nervous system calls for reassessment of the mechanism by which lactate exerts its neuroprotective effects. Here, we show that HCA1 receptor expression is enhanced 24 hours after reperfusion in an middle cerebral artery occlusion stroke model, in the ischemic cortex. Interestingly, intravenous injection of L-lactate at reperfusion led to further enhancement of HCA1 receptor expression in the cortex and striatum. Using an in vitro oxygen-glucose deprivation model, we show that the HCA1 receptor agonist 3,5-dihydroxybenzoic acid reduces cell death. We also observed that D-lactate, a reputedly non-metabolizable substrate but partial HCA1 receptor agonist, also provided neuroprotection in both in vitro and in vivo ischemia models. Quite unexpectedly, we show D-lactate to be partly extracted and oxidized by the rodent brain. Finally, pyruvate offered neuroprotection in vitro whereas acetate was ineffective. Our data suggest that L- and D-lactate offer neuroprotection in ischemia most likely by acting as both an HCA1 receptor agonist for non-astrocytic (most likely neuronal) cells as well as an energy substrate.
Resumo:
To sustain a lifelong ability to initiate organs, plants retain pools of undifferentiated cells with a preserved proliferation capacity. The root pericycle represents a unique tissue with conditional meristematic activity, and its tight control determines initiation of lateral organs. Here we show that the meristematic activity of the pericycle is constrained by the interaction with the adjacent endodermis. Release of these restraints by elimination of endodermal cells by single-cell ablation triggers the pericycle to re-enter the cell cycle. We found that endodermis removal substitutes for the phytohormone auxin-dependent initiation of the pericycle meristematic activity. However, auxin is indispensable to steer the cell division plane orientation of new organ-defining divisions. We propose a dual, spatiotemporally distinct role for auxin during lateral root initiation. In the endodermis, auxin releases constraints arising from cell-to-cell interactions that compromise the pericycle meristematic activity, whereas, in the pericycle, auxin defines the orientation of the cell division plane to initiate lateral roots.