897 resultados para Ferrite nanoparticle
Resumo:
A simple method for the fabrication of Pd nanoparticles is described. The three-dimensional Pd nanoparticle films are directly formed on a gold electrode surface by simple electrodeposition at -200 mV from a solution of 1 M H2SO4+0.01 mM K2PdCl4. X-Ray photoelectron spectroscopy verifies the constant composition of the Pd nanoparticle films. Atomic force microscopy proves that the as-prepared Pd nanoparticles are uniformly distributed with an average particle diameter of 45-60 nm. It is confirmed that the morphology of the Pd nanoparticle films are correlated with the electrodeposition time and the state of the Au substrate. The resulting Pd-nanoparticle-film-modified electrode possesses high catalytic activity for the reduction of dissolved oxygen in 0.1 M KCl solution. Freshly prepared Pd nanoparticles can catalyze the reduction of O-2 by a 4-electron process at -200 mV in 0.1 M KCl, but this system is not very stable. The cathodic peaks corresponding to the reduction of O-2 gradually decrease with potential cycling and at last reach a steady state. Then two well-defined reduction peaks are observed at -390 and -600 mV vs. Ag/AgCl/KCl (sat.). Those two peaks correspond to a 2-step process for the 4-electron reduction pathway of O-2 in this neutral medium.
Resumo:
A two-armed polymer with a crown ether core self-assembles to produce macroporous films with pores perpendicularly reaching through the film down to the substrate. A possible assembling mechanism is discussed. The pore size can be conveniently adjusted by changing the solution concentration. These through-hole macroporous films provide a template for fabricating an array of Cu nanoparticle aggregates.
Resumo:
The phase-transformation in sol-gel preparation of barium hexaferrite and the formation of barium hexaferrite doped with La3+ Were studied by chemical phase analysis, X-ray diffraction and infrared spectrometry analysis. The experimental results show that phase transformation reactions of FeCO3, Fe2O3 and BaFe2O4, barium hexaferrite and gamma-Fe2O3 take place in the heat treatment of gel. While the doping lanthanide ion replace barium ion, an equivalent quantity of Fe3+ are reduced to Fe2+ to maintain the charge equilibrium.
Resumo:
Barium hexaferrite was synthesized by chemical co-precipitation. Its Mossbauer spectra were obtained. A semi-empirical model, based on the Phillips theory of bonding, has been developed for quantitative explanation of the Mossbauer isomer shifts of Fe ions in BaFe12O19 crystals. The results show that, using the relationship between isomer shifts and covalency, the site assignments in hexaferrites will be resolved easily. This paper provides a powerful tool for studying other members of the hexagonal ferrimagnetic oxides family.
Resumo:
The cetyltrimethylammonium bromide (CTAB)/2-octanol/water microemulsion system was used to synthesize barium fluoride nanoparticles. X-ray powder diffraction (XRD) analysis showed that the products were single phase. The results of scanning electron microscopy and calculations using the Scherrer equation from the line widths of the XRD have been used to estimate the average particle sizes of the powder products. The results showed that the nanoparticle size was affected by water content and surfactant (CTAB) concentration. As water content decreases from 14.2 to 9.47% (w/w), the particle size decreases from 75 to 40 rim. In addition, increasing the reaction times from 5 to 120 min increases the particle size from 75 to 150 rim, and increasing the amount of surfactant decreases the size of the particle. Luminescence spectra of the BaF2:Ce nanoparticles are also discussed.
Resumo:
We initiate a systematic exploration of a natural polymer, chitosan, as a structural material for designing functional layers on electrode surfaces in this work. Au colloid films are organized on chitosan layer by adsorption. We have successfully constructed a multilayer An nanoparticle assembly through electrostatic interactions on chitosan functionalized quartz substrates by the alternate treatment of the substrate with solution of citrate-stabilized gold nanoparticles (negatively charged) and chitosan solution (positively charged). The resulting substrates were characterized by UV-Vis spectrometry, atomic force microscopy (AFM), and electrochemical impedance spectroscopy (EIS) measurements. These assemblies of colloid An multilayer are highly stable, and can be kept for a long time in distilled water, only being removed by scratching or extreme electrochemical conditions.
Resumo:
Recently, a novel approach for preparing SERS and SPR substrates was developed, which indicates a potential application in tailoring the interfacial structure of an electrode surface. In this study, (3-mercaptopropyl)trimethoxysilane (MPTMS) was selected as a polymeric adhesive layer, and a low concentration of colloid Au solution was used to achieve a more accurate control over interface morphology at nanoscale dimensions due to slow self-assembling kinetics of gold nanoparticle's. Subsequent seeding growth of these MPTMS-supported submonolayers of gold nanoparticles in Au3+/NH2OH aqueous solution enlarges particle size and eventually results in the generation of conductive gold films (similar to previous (3-aminopropyl)trimethoxysilane-supported gold films). Such tunable interface structure was evaluated by atomic force microscopy (AFM). Also, ac impedance spectroscopy (ACIS) and cyclic voltammograms were performed to evaluate electrochemical properties of the as-prepared interfaces by using Fe(CN)(6) (3-/4-) couples as a probe. Furthermore, relevant theories of microarray electrodes were introduced into this study to explain the highly tunable electrochemical properties of the as-prepared interfaces. As a result, it is concluded that the electrochemical properties toward Fe(CN)(6) (3-/4-) couples are highly dependent on the active nanoelectrode (nanoparticles) area fraction and nanoparticles are fine-tuners of interfacial properties because the number density. (numbers/unit area) and size of nanoparticles are highly tunable by self-assembling and seeding growth time scale control. This is in agreement with the theoretical expectations for a microarray electrode if a single nanoparticle tethered to a blocking SAM is taken as a nanoelectrode and 2-D nanoparticle assemblies are taken as nanoelectrode arrays.
Resumo:
We synthesized a kind of gold nanoparticle protected by a synthetic lipid (didodecyidimethylammonium bromide, DDAB). With the help of these gold nanoparticles, hemoglobin can exhibit a direct electron transfer (DET) reaction. The formal potential locates at -169 mV vs. Ag/AgCl. Spectral data indicated the hemoglobin on the electrode was not denatured. The lipid-protected gold nanoparticles were very stable (for at least 8 months). Their average diameter is 6.42 nm. It is the first time to use monolayer-protected nanoparticles to realize the direct electrochemistry of protein.
Resumo:
Photoactive and electroactive thionine dyes have been introduced in high-surface-area surface-confined Au-nanoparticle superstructures by layer-by-layer deposition techniques.
Resumo:
A novel "bottom-up" approach to highly controllable nanoelectrode ensembles (NEEs) has been developed using colloidal nanoparticle self-assembly techniques. Ibis solution-based strategy allows flexible control over nanoelectrode size, shape, and interspacing of the as-prepared NEEs. Atomic force microscopy (AFM) was proved to be a powerful tool to monitor the NEE topography, which yields parameters that can be used to calculate the fractional nanoelectrode area of the NEEs. AFM, ac impedance, and cyclic voltammetry studies demonstrate that most of nanoelectrodes on the NEEs (at least by 9-min self-assembly) are not diffusionally isolated under conventional ac frequency range and scan rates. As a result, the NEEs behave as "nanoelectrode-patch" assemblies. Besides, the as-prepared NEEs by different self-assembling times show an adjustable sensitivity to heterogeneous electron-transfer kinetics, which may be helpful to sensor applications. Like these NEEs constructed by other techniques, the present NEEs prepared by chemical self-assembly also exhibit the enhancement of electroanalytical detection limit consistent with NEE theory prediction.
Resumo:
Stable colloidal solutions of gold nanoparticles surface-derivatized with a thiol monolayer have been prepared using two-phase (water-nitrobenzene) reduction of AuCl4- by sodium borohydride in the presence of 2-mercapto-3-n-octylthiophene (MOT). This kind of surface-functionalized gold nanoparticles can be easily incorporated into the poly(3-octylthiophene) (POT) films on electrode in the process of electrochemical polymerization leading to POT-gold nanoparticle (POT-Au) composite films. Scanning probe microscopy (SPM) and X-ray photoelectric spectroscopy (XPS) have been employed to characterize the surface-derivatized particles and the resulting films. The method of incorporation of nanoparticles into polymer by surface-derivatization and in situ polymerization can also be employed to prepare many other polymer-nanoparticle compostie materials.
Resumo:
CTAB-stabilized silver nanoparticles were synthesized by NaBH4 reduction. The as-prepared nanoparticles can be self-assembled on 3-mercaptopropionic acid (MPA) modified gold electrode, which was supported strongly by XPS measurements. Exceptional long-term stability of the as-prepared colloidal silver aqueous solution and the desorption of silver nanoparticle ensemble on MPA after alcohol rinsing proved that these CTAB molecules adsorbed on silver core formed interdigitated bilayer structure. DPV and differential capacitance measurements were performed to characterize the as-prepared silver nanoparticle ensemble. and the interesting quantized capacitance charging behaviors were observed.
Resumo:
Gold nanoparticles with size 3-10 nm (diameter) were prepared by the reduction of HAuCl4 in a CTAB/octane + 1-butanol/H2O reverse micelle system using NaBH4 as the reducing agent. The as-formed gold nanoparticle colloid was characterized by UV/vis absorption spectrum and transmission electron microscopy(TEM). Various capping ligands, such as alkylthiols with different chain length and shape, trioctylphosphine (TOP), and pyridine are used to passivate the gold nanoparticles for the purpose of self-organization into superstructures. It is shown that the ligands have a great influence on the self-organization of gold nanoparticles into superlattices, and dodecanethiol C12H25SH is confirmed to be the best ligand for the self-organization. Self-organization of C12H25SH-capped gold nanoparticles into 1D, 2D and 3D superlattices has been observed on the carbon-coated copper grid by TEM without using any selective precipitation process.
Resumo:
Nanoparticulate ferric oxide - tris - (2,4-di-t-amylphenoxy) - (8-quinolinolyl) copper phthalocyanine Langmuir-Blodgett Z-type multilayers were obtained by using monodisperse nanoparticle ferric oxide hydrosol as the subphase. XPS data reveal that the nanoparticle ferric oxide exist as alpha -Fe2O3 phase in the films. Transition electron microscopic (TEM) image of the alternating monolayer shows that the film was highly covered by the copper phthalocyanine derivative and the nanoparticles were arranged rather closely. IR and visible spectra all give the results that the nanoparticles were deposited onto the substrate with the copper phthalocyanine derivative. The gas-sensing measurements show that the alternating LB film had very fast response-recovery characteristic to 2 ppm C2H5OH gas, and also sensitive to larger than 200 ppm NH3.
Resumo:
Transparent organic-inorganic hybrid monoliths containing rare-earth complexes (Eu(TTA)(3)Phen, Tb(Sal)(3)) were prepared via the sol-gel technique. It could be observed by transmission electron microscopy that the fluorescent particles are distributed in the matrix at the microscopic level. The matrix is composed of organic-inorganic semiinterpenetrating networks, i.e., PHEMA-SiO2 system. The fluorescence emission spectra of samples are similar to those from corresponding powdered Eu(III) and Tb(III) complexes, and the half-widths of the strongest bands are less than 10 nm, which indicates that the monolith exhibits high fluorescence intensity and color purity. Furthermore, the fluorescence spectra exhibit no obvious change with decreasing nanoparticle size of the rare-earth complex. The fluorescence lifetimes of samples are longer than pure Eu(III), Tb(III) complexes, respectively. Samples irradiated with an UV lamp (365 nm) are still transparent but become bright red and green in color due to fluorescence of Eu(III) and Tb(III) complexes. (C) 2000 Elsevier Science B.V. All rights reserved.