843 resultados para Feature grouping
Resumo:
Background: International data on child maltreatment are largely derived from child protection agencies, and predominantly report only substantiated cases of child maltreatment. This approach underestimates the incidence of maltreatment and makes inter-jurisdictional comparisons difficult. There has been a growing recognition of the importance of health professionals in identifying, documenting and reporting suspected child maltreatment. This study aimed to describe the issues around case identification using coded morbidity data, outline methods for selecting and grouping relevant codes, and illustrate patterns of maltreatment identified. Methods: A comprehensive review of the ICD-10-AM classification system was undertaken, including review of index terms, a free text search of tabular volumes, and a review of coding standards pertaining to child maltreatment coding. Identified codes were further categorised into maltreatment types including physical abuse, sexual abuse, emotional or psychological abuse, and neglect. Using these code groupings, one year of Australian hospitalisation data for children under 18 years of age was examined to quantify the proportion of patients identified and to explore the characteristics of cases assigned maltreatment-related codes. Results: Less than 0.5% of children hospitalised in Australia between 2005 and 2006 had a maltreatment code assigned, almost 4% of children with a principal diagnosis of a mental and behavioural disorder and over 1% of children with an injury or poisoning as the principal diagnosis had a maltreatment code assigned. The patterns of children assigned with definitive T74 codes varied by sex and age group. For males selected as having a maltreatment-related presentation, physical abuse was most commonly coded (62.6% of maltreatment cases) while for females selected as having a maltreatment-related presentation, sexual abuse was the most commonly assigned form of maltreatment (52.9% of maltreatment cases). Conclusion: This study has demonstrated that hospital data could provide valuable information for routine monitoring and surveillance of child maltreatment, even in the absence of population-based linked data sources. With national and international calls for a public health response to child maltreatment, better understanding of, investment in and utilisation of our core national routinely collected data sources will enhance the evidence-base needed to support an appropriate response to children at risk.
Resumo:
Special collections, because of the issues associated with conservation and use, a feature they share with archives, tend to be the most digitized areas in libraries. The Nineteenth Century Schoolbooks collection is a collection of 9000 rarely held nineteenth-century schoolbooks that were painstakingly collected over a lifetime of work by Prof. John A. Nietz, and donated to the Hillman Library at the University of Pittsburgh in 1958, which has since grown to 15,000. About 140 of these texts are completely digitized and showcased in a publicly accessible website through the University of Pittsburgh’s Library, along with a searchable bibliography of the entire collection, which expanded the awareness of this collection and its user base to beyond the academic community. The URL for the website is http://digital.library.pitt.edu/nietz/. The collection is a rich resource for researchers studying the intellectual, educational, and textbook publishing history of the United States. In this study, we examined several existing records collected by the Digital Research Library at the University of Pittsburgh in order to determine the identity and searching behaviors of the users of this collection. Some of the records examined include: 1) The results of a 3-month long user survey, 2) User access statistics including search queries for a period of one year, a year after the digitized collection became publicly available in 2001, and 3) E-mail input received by the website over 4 years from 2000-2004. The results of the study demonstrate the differences in online retrieval strategies used by academic researchers and historians, archivists, avocationists, and the general public, and the importance of facilitating the discovery of digitized special collections through the use of electronic finding aids and an interactive interface with detailed metadata.
Resumo:
Path planning and trajectory design for autonomous underwater vehicles (AUVs) is of great importance to the oceanographic research community because automated data collection is becoming more prevalent. Intelligent planning is required to maneuver a vehicle to high-valued locations to perform data collection. In this paper, we present algorithms that determine paths for AUVs to track evolving features of interest in the ocean by considering the output of predictive ocean models. While traversing the computed path, the vehicle provides near-real-time, in situ measurements back to the model, with the intent to increase the skill of future predictions in the local region. The results presented here extend prelim- inary developments of the path planning portion of an end-to-end autonomous prediction and tasking system for aquatic, mobile sensor networks. This extension is the incorporation of multiple vehicles to track the centroid and the boundary of the extent of a feature of interest. Similar algorithms to those presented here are under development to consider additional locations for multiple types of features. The primary focus here is on algorithm development utilizing model predictions to assist in solving the motion planning problem of steering an AUV to high-valued locations, with respect to the data desired. We discuss the design technique to generate the paths, present simulation results and provide experimental data from field deployments for tracking dynamic features by use of an AUV in the Southern California coastal ocean.
Resumo:
Data collection using Autonomous Underwater Vehicles (AUVs) is increasing in importance within the oceano- graphic research community. Contrary to traditional moored or static platforms, mobile sensors require intelligent planning strategies to manoeuvre through the ocean. However, the ability to navigate to high-value locations and collect data with specific scientific merit is worth the planning efforts. In this study, we examine the use of ocean model predictions to determine the locations to be visited by an AUV, and aid in planning the trajectory that the vehicle executes during the sampling mission. The objectives are: a) to provide near-real time, in situ measurements to a large-scale ocean model to increase the skill of future predictions, and b) to utilize ocean model predictions as a component in an end-to-end autonomous prediction and tasking system for aquatic, mobile sensor networks. We present an algorithm designed to generate paths for AUVs to track a dynamically evolving ocean feature utilizing ocean model predictions. This builds on previous work in this area by incorporating the predicted current velocities into the path planning to assist in solving the 3-D motion planning problem of steering an AUV between two selected locations. We present simulation results for tracking a fresh water plume by use of our algorithm. Additionally, we present experimental results from field trials that test the skill of the model used as well as the incorporation of the model predictions into an AUV trajectory planner. These results indicate a modest, but measurable, improvement in surfacing error when the model predictions are incorporated into the planner.
Resumo:
Harmful Algal Blooms (HABs) have become an important environmental concern along the western coast of the United States. Toxic and noxious blooms adversely impact the economies of coastal communities in the region, pose risks to human health, and cause mortality events that have resulted in the deaths of thousands of fish, marine mammals and seabirds. One goal of field-based research efforts on this topic is the development of predictive models of HABs that would enable rapid response, mitigation and ultimately prevention of these events. In turn, these objectives are predicated on understanding the environmental conditions that stimulate these transient phenomena. An embedded sensor network (Fig. 1), under development in the San Pedro Shelf region off the Southern California coast, is providing tools for acquiring chemical, physical and biological data at high temporal and spatial resolution to help document the emergence and persistence of HAB events, supporting the design and testing of predictive models, and providing contextual information for experimental studies designed to reveal the environmental conditions promoting HABs. The sensor platforms contained within this network include pier-based sensor arrays, ocean moorings, HF radar stations, along with mobile sensor nodes in the form of surface and subsurface autonomous vehicles. FreewaveTM radio modems facilitate network communication and form a minimally-intrusive, wireless communication infrastructure throughout the Southern California coastal region, allowing rapid and cost-effective data transfer. An emerging focus of this project is the incorporation of a predictive ocean model that assimilates near-real time, in situ data from deployed Autonomous Underwater Vehicles (AUVs). The model then assimilates the data to increase the skill of both nowcasts and forecasts, thus providing insight into bloom initiation as well as the movement of blooms or other oceanic features of interest (e.g., thermoclines, fronts, river discharge, etc.). From these predictions, deployed mobile sensors can be tasked to track a designated feature. This focus has led to the creation of a technology chain in which algorithms are being implemented for the innovative trajectory design for AUVs. Such intelligent mission planning is required to maneuver a vehicle to precise depths and locations that are the sites of active blooms, or physical/chemical features that might be sources of bloom initiation or persistence. The embedded network yields high-resolution, temporal and spatial measurements of pertinent environmental parameters and resulting biology (see Fig. 1). Supplementing this with ocean current information and remotely sensed imagery and meteorological data, we obtain a comprehensive foundation for developing a fundamental understanding of HAB events. This then directs labor- intensive and costly sampling efforts and analyses. Additionally, we provide coastal municipalities, managers and state agencies with detailed information to aid their efforts in providing responsible environmental stewardship of their coastal waters.
Resumo:
Autonomous Underwater Vehicles (AUVs) are revolutionizing oceanography through their versatility, autonomy and endurance. However, they are still an underutilized technology. For coastal operations, the ability to track a certain feature is of interest to ocean scientists. Adaptive and predictive path planning requires frequent communication with significant data transfer. Currently, most AUVs rely on satellite phones as their primary communication. This communication protocol is expensive and slow. To reduce communication costs and provide adequate data transfer rates, we present a hardware modification along with a software system that provides an alternative robust disruption- tolerant communications framework enabling cost-effective glider operation in coastal regions. The framework is specifically designed to address multi-sensor deployments. We provide a system overview and present testing and coverage data for the network. Additionally, we include an application of ocean-model driven trajectory design, which can benefit from the use of this network and communication system. Simulation and implementation results are presented for single and multiple vehicle deployments. The presented combination of infrastructure, software development and deployment experience brings us closer to the goal of providing a reliable and cost-effective data transfer framework to enable real-time, optimal trajectory design, based on ocean model predictions, to gather in situ measurements of interesting and evolving ocean features and phenomena.
Resumo:
-
Resumo:
Stereo vision is a method of depth perception, in which depth information is inferred from two (or more) images of a scene, taken from different perspectives. Applications of stereo vision include aerial photogrammetry, autonomous vehicle guidance, robotics, industrial automation and stereomicroscopy. A key issue in stereo vision is that of image matching, or identifying corresponding points in a stereo pair. The difference in the positions of corresponding points in image coordinates is termed the parallax or disparity. When the orientation of the two cameras is known, corresponding points may be projected back to find the location of the original object point in world coordinates. Matching techniques are typically categorised according to the nature of the matching primitives they use and the matching strategy they employ. This report provides a detailed taxonomy of image matching techniques, including area based, transform based, feature based, phase based, hybrid, relaxation based, dynamic programming and object space methods. A number of area based matching metrics as well as the rank and census transforms were implemented, in order to investigate their suitability for a real-time stereo sensor for mining automation applications. The requirements of this sensor were speed, robustness, and the ability to produce a dense depth map. The Sum of Absolute Differences matching metric was the least computationally expensive; however, this metric was the most sensitive to radiometric distortion. Metrics such as the Zero Mean Sum of Absolute Differences and Normalised Cross Correlation were the most robust to this type of distortion but introduced additional computational complexity. The rank and census transforms were found to be robust to radiometric distortion, in addition to having low computational complexity. They are therefore prime candidates for a matching algorithm for a stereo sensor for real-time mining applications. A number of issues came to light during this investigation which may merit further work. These include devising a means to evaluate and compare disparity results of different matching algorithms, and finding a method of assigning a level of confidence to a match. Another issue of interest is the possibility of statistically combining the results of different matching algorithms, in order to improve robustness.
Resumo:
This paper presents a method of voice activity detection (VAD) suitable for high noise scenarios, based on the fusion of two complementary systems. The first system uses a proposed non-Gaussianity score (NGS) feature based on normal probability testing. The second system employs a histogram distance score (HDS) feature that detects changes in the signal through conducting a template-based similarity measure between adjacent frames. The decision outputs by the two systems are then merged using an open-by-reconstruction fusion stage. Accuracy of the proposed method was compared to several baseline VAD methods on a database created using real recordings of a variety of high-noise environments.
Resumo:
Much of the research on the delivery of advice by professionals such as physicians, health workers and counsellors, both on the telephone and in face to face interaction more generally, has focused on the theme of client resistance and the consequent need for professionals to adopt particular formats to assist in the uptake of the advice. In this paper we consider one setting, Kid’s Helpline, the national Australian counselling service for children and young people, where there is an institutional mandate not to give explicit advice in accordance with the values of self-direction and empowerment. The paper examines one practice, the use of script proposals by counsellors, which appears to offer a way of providing support which is consistent with these values. Script proposals entail the counsellors packaging their advice as something that the caller might say – at some future time – to a third party such as a friend, teacher, parent, or partner, and involve the counsellor adopting the speaking position of the caller in what appears as a rehearsal of a forthcoming strip of interaction. Although the core feature of a script proposal is the counsellor’s use of direct reported speech they appear to be delivered, not so much as exact words to be followed, but as the type of conversation that the client needs to have with the 3rd party. Script proposals, in short, provide models of what to say as well as alluding to how these could be emulated by the client. In their design script proposals invariably incorporate one or more of the most common rhetorical formats for maximising the persuasive force of an utterance such as a three part list or a contrastive pair. Script proposals, moreover, stand in a complex relation to the prior talk and one of their functions appears to be to summarise, respecify or expand upon the client’s own ideas or suggestions for problem solving that have emerged in these preceding sequences.
Resumo:
In their correspondence, He and colleagues question our conclusion of little or no uplift preceding Emeishan volcanism that we reported in our letter1. Debate concerns the nature of the contact between the Maokou limestone and Emeishan volcanics, the depositional environment and volumetric significance of mafic hydromagmatic deposits (MHDs), and evidence for symmetrical domal thinning. MHDs in the Daqiao section are separated from the Maokou limestone by 100 m of subaerial basaltic lavas, but elsewhere MHDs — previously interpreted as basal conglomerates2, 3 — directly overlie the Maokou2, 3. MHDs thus feature strongly in basal sections of the Emeishan lava succession, as also recently shown4 elsewhere in the Emeishan. An irregular surface at the top of the Maokou limestone has been interpreted as an erosional unconformity2, 3, but clastic deposits presented as evidence of this erosion2, 3 are MHDs produced by explosive magma–water interaction1. A clear demonstration that this irregular top surface is an erosional truncation of limestone reef facies (slope/rim, flat, lagoonal) is currently lacking, but is critical because reefs and carbonate platforms show considerable natural relief of tens of metres. The persistent hot, wet climate since the Oligocene has produced well-developed weathering profiles on exposed Palaeozoic marine sedimentary sequences5, but weathering and karst relief of the uppermost Maokou limestone underlying the flood basalts have not been properly documented, nor shown to be of middle Permian age and immediately preceding emplacement of the large igneous province.
Resumo:
In automatic facial expression detection, very accurate registration is desired which can be achieved via a deformable model approach where a dense mesh of 60-70 points on the face is used, such as an active appearance model (AAM). However, for applications where manually labeling frames is prohibitive, AAMs do not work well as they do not generalize well to unseen subjects. As such, a more coarse approach is taken for person-independent facial expression detection, where just a couple of key features (such as face and eyes) are tracked using a Viola-Jones type approach. The tracked image is normally post-processed to encode for shift and illumination invariance using a linear bank of filters. Recently, it was shown that this preprocessing step is of no benefit when close to ideal registration has been obtained. In this paper, we present a system based on the Constrained Local Model (CLM) which is a generic or person-independent face alignment algorithm which gains high accuracy. We show these results against the LBP feature extraction on the CK+ and GEMEP datasets.
Resumo:
The computation of compact and meaningful representations of high dimensional sensor data has recently been addressed through the development of Nonlinear Dimensional Reduction (NLDR) algorithms. The numerical implementation of spectral NLDR techniques typically leads to a symmetric eigenvalue problem that is solved by traditional batch eigensolution algorithms. The application of such algorithms in real-time systems necessitates the development of sequential algorithms that perform feature extraction online. This paper presents an efficient online NLDR scheme, Sequential-Isomap, based on incremental singular value decomposition (SVD) and the Isomap method. Example simulations demonstrate the validity and significant potential of this technique in real-time applications such as autonomous systems.
Resumo:
This paper presents a general methodology for learning articulated motions that, despite having non-linear correlations, are cyclical and have a defined pattern of behavior Using conventional algorithms to extract features from images, a Bayesian classifier is applied to cluster and classify features of the moving object. Clusters are then associated in different frames and structure learning algorithms for Bayesian networks are used to recover the structure of the motion. This framework is applied to the human gait analysis and tracking but applications include any coordinated movement such as multi-robots behavior analysis.
Resumo:
This paper presents a robust place recognition algorithm for mobile robots. The framework proposed combines nonlinear dimensionality reduction, nonlinear regression under noise, and variational Bayesian learning to create consistent probabilistic representations of places from images. These generative models are learnt from a few images and used for multi-class place recognition where classification is computed from a set of feature-vectors. Recognition can be performed in near real-time and accounts for complexity such as changes in illumination, occlusions and blurring. The algorithm was tested with a mobile robot in indoor and outdoor environments with sequences of 1579 and 3820 images respectively. This framework has several potential applications such as map building, autonomous navigation, search-rescue tasks and context recognition.