962 resultados para Factor-i Receptor
Resumo:
Neutrophil Elastase (NE) is a pro-inflammatory protease present at higher than normal levels in the lung during inflammatory disease. NE regulates IL-8 production from airway epithelial cells and can activate both EGFR and TLR4. TACE/ADAM17 has been reported to trans-activate EGFR in response to NE. Here, using 16HBE14o-human bronchial epithelial cells we demonstrate a new mechanism by which NE regulates both of these events. A high molecular weight soluble metalloprotease activity detectable only in supernatants from NE-treated cells by gelatin and casein zymography was confirmed to be meprin alpha by Western immunoblotting. In vitro studies demonstrated the ability of NE to activate meprin alpha, which in turn could release soluble TGFalpha and induce IL-8 production from 16HBE14o- cells. These effects were abrogated by actinonin, a specific meprin inhibitor. NE-induced IL-8 expression was also inhibited by meprin alpha siRNA. Immunoprecipitation studies detected EGFR/TLR4 complexes in NE-stimulated cells overexpressing these receptors. Confocal studies confirmed colocalization of EGFR and TLR4 in 16HBE14o- cells stimulated with meprin alpha. NFkappaB was also activated via MyD88 in these cells by meprin alpha. In bronchoalveolar lavage fluid from NE knock-out mice infected intra-tracheally with Pseudomonas aeruginosa meprin alpha was significantly decreased compared with control mice, and was significantly increased and correlated with NE activity, in bronchoalveolar lavage fluid from individuals with cystic fibrosis but not healthy controls. The data describe a previously unidentified lung metalloprotease meprin alpha, and its role in NE-induced EGFR and TLR4 activation and IL-8 production.
Resumo:
PURPOSE: Glioblastomas are notorious for resistance to therapy, which has been attributed to DNA-repair proficiency, a multitude of deregulated molecular pathways, and, more recently, to the particular biologic behavior of tumor stem-like cells. Here, we aimed to identify molecular profiles specific for treatment resistance to the current standard of care of concomitant chemoradiotherapy with the alkylating agent temozolomide. PATIENTS AND METHODS: Gene expression profiles of 80 glioblastomas were interrogated for associations with resistance to therapy. Patients were treated within clinical trials testing the addition of concomitant and adjuvant temozolomide to radiotherapy. RESULTS: An expression signature dominated by HOX genes, which comprises Prominin-1 (CD133), emerged as a predictor for poor survival in patients treated with concomitant chemoradiotherapy (n = 42; hazard ratio = 2.69; 95% CI, 1.38 to 5.26; P = .004). This association could be validated in an independent data set. Provocatively, the HOX cluster was reminiscent of a "self-renewal" signature (P = .008; Gene Set Enrichment Analysis) recently characterized in a mouse leukemia model. The HOX signature and EGFR expression were independent prognostic factors in multivariate analysis, adjusted for the O-6-methylguanine-DNA methyltransferase (MGMT) methylation status, a known predictive factor for benefit from temozolomide, and age. Better outcome was associated with gene clusters characterizing features of tumor-host interaction including tumor vascularization and cell adhesion, and innate immune response. CONCLUSION: This study provides first clinical evidence for the implication of a "glioma stem cell" or "self-renewal" phenotype in treatment resistance of glioblastoma. Biologic mechanisms identified here to be relevant for resistance will guide future targeted therapies and respective marker development for individualized treatment and patient selection.
Resumo:
The insulin-like growth factor (IGF) is a major anabolic regulator in articular cartilage. The IGF-binding proteins (IGFBPs) are increased during osteoarthritis (OA), but the function of the later proteins remains unknown. In general, the IGFBPs are pluripotential effectors capable of IGF regulation and of acting on their own to control key cell functions, including survival and proliferation. The independent functions are often associated with their cell location, and therefore this study explores the distribution of IGFBP-2 and IGFBP-3 in articular chondrocytes. Immunohistochemistry was used to localize IGFBP-2 in normal human articular cartilage. Bovine chondrocytes were used for subcellular fractionation (hypotonic cell lysis) under nonreducing conditions and nuclear purification (centrifugation on sucrose cushions). Cell fraction markers and IGFBPs were assayed in the subcellular fractions by Western immunoblot. The IHC results showed association of IGFBP-2 with chondrocytes, but not with the nuclei. Subcellular fractionation of isolated chondrocytes yielded intact nuclei as assessed at the light microscopic level; the nuclear marker histone H1 was exclusively associated with this fraction. More than 90% of the cytoplasmic marker GAPDH and all the detectable IGFBP-2 were in the cytoplasmic fraction. Immunoreactive IGFBP-3 was found in the cytoplasmic and peri-nuclear/nuclear fractions. Chondrocytes contain intracellular IGFBP-2 and IGFBP-3 but only IGFBP-3 is associated with nuclei. This suggests the hypothesis that the actions of these IGFBPs in articular cartilage extend beyond the classic modulation of IGF receptor action.
Resumo:
Anti-human leukocyte antigen class I (HLA I) antibodies were shown to activate several protein kinases in endothelial cells (ECs), which induces proliferation and cell survival. An important phenomenon in antibody-mediated rejection is the occurrence of interstitial edema. We investigated the effect of anti-HLA I antibodies on endothelial proliferation and permeability, as one possible underlying mechanism of edema formation. HLA I antibodies increased the permeability of cultured ECs isolated from umbilical veins. Anti-HLA I antibodies induced the production of vascular endothelial growth factor (VEGF) by ECs, which activated VEGF receptor 2 (VEGFR2) in an autocrine manner. Activated VEGFR2 led to a c-Src-dependent phosphorylation of vascular endothelial (VE)-cadherin and its degradation. Aberrant VE-cadherin expression resulted in impaired adherens junctions, which might lead to increased endothelial permeability. This effect was only observed after cross-linking of HLA I molecules by intact antibodies. Furthermore, our results suggest that increased endothelial proliferation following anti-HLA I treatment occurs via autocrine VEGFR2 activation. Our data indicate the ability of anti-HLA I to induce VEGF production in ECs. Transactivation of VEGFR2 leads to increased EC proliferation and paracellular permeability. The autocrine effect of VEGF on endothelial permeability might be an explanation for the formation of interstitial edema after transplantation.
Resumo:
The receptor tyrosine kinase MET is a prime target in clinical oncology due to its aberrant activation and involvement in the pathogenesis of a broad spectrum of malignancies. Similar to other targeted kinases, primary and secondary mutations seem to represent an important resistance mechanism to MET inhibitors. Here, we report the biologic activity of a novel MET inhibitor, EMD1214063, on cells that ectopically express the mutated MET variants M1268T, Y1248H, H1112Y, L1213V, H1112L, V1110I, V1206L, and V1238I. Our results demonstrate a dose-dependent decrease in MET autophosphorylation in response to EMD1214063 in five out of the eight cell lines (IC50 2-43nM). Blockade of MET by EMD1214063 was accompanied by a reduced activation of downstream effectors in cells expressing EMD1214063-sensitive mutants. In all sensitive mutant-expressing lines, EMD1214063 altered cell cycle distribution, primarily with an increase in G1 phase. EMD1214063 strongly influenced MET-driven biological functions, such as cellular morphology, MET-dependent cell motility and anchorage-independent growth. To assess the in vivo efficacy of EMD1214063, we used a xenograft tumor model in immunocompromised mice bearing NIH3T3 cells expressing sensitive and resistant MET mutated variants. Animals were randomized for the treatment with EMD1214063 (50mg/kg/day) or vehicle only. Remarkably, five days of EMD1214063 treatment resulted in a complete regression of the sensitive H1112L-derived tumors, while tumor growth remained unaffected in mice with L1213V tumors and in vehicle-treated animals. Collectively, the current data identifies EMD1214063 as a potent MET small molecule inhibitor with selective activity towards mutated MET variants.
Resumo:
OBJECTIVE Catecholamines released from β-adrenergic neurons upon stress can interfere with periodontal regeneration. The cellular mechanisms, however, are unclear. Here, we assessed the effect of catecholamines on proliferation of periodontal fibroblasts. METHODS Fibroblasts from the gingiva and the periodontal ligament were exposed to agonists of the β-adrenergic receptors; isoproterenol (ISO, non-selective β-adrenergic agonist), salbutamol (SAL, selective β2-adrenergic receptor agonist) and BRL 37344 (BRL selective β3-receptor agonist). Proliferation was stimulated with platelet-derived growth factor-BB (PDGF-BB). Pharmacological inhibitors and gene expression analysis further revealed β-adrenergic signalling. RESULTS Gingiva and periodontal ligament fibroblast express the β2-adrenergic receptor. ISO and SAL but not BRL decreased proliferation of fibroblasts in the presence of PDGF-BB. The inhibitory effect of β-adrenergic signalling on proliferation but not protein synthesis in response to PDGF-BB was reduced by propranolol, a non-selective β-adrenergic antagonist. CONCLUSIONS These results suggest that β2-receptor agonists can reduce the mitogenic response of periodontal fibroblasts. These data add to the compelling concept that blocking of β2-receptor signalling can support tissue maintenance and regeneration.
Resumo:
Transforming growth factor-b (TGF-b) is a cytokine that plays essential roles in regulating embryonic development and tissue homeostasis. In normal cells, TGF-b exerts an anti-proliferative effect. TGF-b inhibits cell growth by controlling a cytostatic program that includes activation of the cyclin-dependent kinase inhibitors p15Ink4B and p21WAF1/Cip1 and repression of c-myc. In contrast to normal cells, many tumors are resistant to the anti-proliferative effect of TGF-b. In several types of tumors, particularly those of gastrointestinal origin, resistance to the anti-proliferative effect of TGF-b has been attributed to TGF-b receptor or Smad mutations. However, these mutations are absent from many other types of tumors that are resistant to TGF-b-mediated growth inhibition. The transcription factor encoded by the homeobox patterning gene DLX4 is overexpressed in a wide range of malignancies. In this study, I demonstrated that DLX4 blocks the anti-proliferative effect of TGF-b by disabling key transcriptional control mechanisms of the TGF-b cytostatic program. Specifically, DLX4 blocked the ability of TGF-b to induce expression of p15Ink4B and p21WAF1/Cip1 by directly binding to Smad4 and to Sp1. Binding of DLX4 to Smad4 prevented Smad4 from forming transcriptional complexes with Smad2 and Smad3, whereas binding of DLX4 to Sp1 inhibited DNA-binding activity of Sp1. In addition, DLX4 induced expression of c-myc, a repressor of p15Ink4B and p21WAF1/Cip1 transcription, independently of TGF-b signaling. The ability of DLX4 to counteract key transcriptional control mechanisms of the TGF-b cytostatic program could explain in part the resistance of tumors to the anti-proliferative effect of TGF-b. This study provides a molecular explanation as to why tumors are resistant to the anti-proliferative effect of TGF-b in the absence of mutations in the TGF-b signaling pathway. Furthermore, this study also provides insights into how aberrant activation of a developmental patterning gene promotes tumor pathogenesis.
Resumo:
Upon sensing of peptide pheromone, Enterococcus faecalis efficiently transfers plasmid pCF10 through a type IV secretion (T4S) system to recipient cells. The PcfF accessory factor and PcfG relaxase initiate transfer by catalyzing strand-specific nicking at the pCF10 origin of transfer sequence (oriT). Here, we present evidence that PcfF and PcfG spatially coordinate docking of the pCF10 transfer intermediate with PcfC, a membrane-bound putative ATPase related to the coupling proteins of gram-negative T4S machines. PcfC and PcfG fractionated with the membrane and PcfF with the cytoplasm, yet all three proteins formed several punctate foci at the peripheries of pheromone-induced cells as monitored by immunofluorescence microscopy. A PcfC Walker A nucleoside triphosphate (NTP) binding site mutant (K156T) fractionated with the E. faecalis membrane and also formed foci, whereas PcfC deleted of its N-terminal putative transmembrane domain (PcfCDelta N103) distributed uniformly throughout the cytoplasm. Native PcfC and mutant proteins PcfCK156T and PcfCDelta N103 bound pCF10 but not pcfG or Delta oriT mutant plasmids as shown by transfer DNA immunoprecipitation, indicating that PcfC binds only the processed form of pCF10 in vivo. Finally, purified PcfCDelta N103 bound DNA substrates and interacted with purified PcfF and PcfG in vitro. Our findings support a model in which (i) PcfF recruits PcfG to oriT to catalyze T-strand nicking, (ii) PcfF and PcfG spatially position the relaxosome at the cell membrane to stimulate substrate docking with PcfC, and (iii) PcfC initiates substrate transfer through the pCF10 T4S channel by an NTP-dependent mechanism.
Resumo:
Background: High grade serous carcinoma whether ovarian, tubal or primary peritoneal, continues to be the most lethal gynecologic malignancy in the USA. Although combination chemotherapy and aggressive surgical resection has improved survival in the past decade the majority of patients still succumb to chemo-resistant disease recurrence. It has recently been reported that amplification of 5q31-5q35.3 is associated with poor prognosis in patients with high grade serous ovarian carcinoma. Although the amplicon contains over 50 genes, it is notable for the presence of several members of the fibroblast growth factor signaling axis. In particular acidic fibroblast growth factor (FGF1) has been demonstrated to be one of the driving genes in mediating the observed prognostic effect of the amplicon in ovarian cancer patients. This study seeks to further validate the prognostic value of fibroblast growth receptor 4 (FGFR4), another candidate gene of the FGF/FGFR axis located in the same amplicon. The emphasis will be delineating the role the FGF1/FGFR4 signaling axis plays in high grade serous ovarian carcinoma; and test the feasibility of targeting the FGF1/FGFR4 axis therapeutically. Materials and Methods: Spearman and Pearson correlation studies on data generated from array CGH and transcriptome profiling analyses on 51 microdissected tumor samples were used to identify genes located on chromosome 5q31-35.3 that showed significant correlation between DNA and mRNA copy numbers. Significant correlation between FGF1 and FGFR4 DNA copy numbers was further validated by qPCR analysis on DNA isolated from 51 microdissected tumor samples. Immunolocalization and quantification of FGFR4 expression were performed on paraffin embedded tissue samples from 183 cases of high-grade serous ovarian carcinoma. The expression was then correlated with clinical data to assess impact on survival. The expression of FGF1 and FGFR4 in vitro was quantified by real-time PCR and western blotting in six high-grade serous ovarian carcinoma cell lines and compared to those in human ovarian surface epithelial cells to identify overexpression. The effect of FGF1 on these cell lines after serum starvation was quantified for in vitro cellular proliferation, migration/invasion, chemoresistance and survival utilizing a combination of commercially available colorimetric, fluorometric and electrical impedance assays. FGFR4 expression was then transiently silenced via siRNA transfection and the effects on response to FGF1, cellular proliferation, and migration were quantified. To identify relevant cellular pathways involved, responsive cell lines were transduced with different transcription response elements using the Cignal-Lenti reporter system and treated with FGF1 with and without transient FGFR4 knock down. This was followed by western blot confirmation for the relevant phosphoproteins. Anti-FGF1 antibodies and FGFR trap proteins were used to attempt inhibition of FGF mediated phenotypic changes and relevant signaling in vitro. Orthotopic intraperitoneal tumors were established in nude mice using serous cell lines that have been previously transfected with luciferase expressing constructs. The mice were then treated with FGFR trap protein. Tumor progression was then followed via bioluminescent imaging. The FGFR4 gene from 52 clinical samples was sequenced to screen for mutations. Results: FGFR4 DNA and mRNA copy numbers were significantly correlated and FGFR4 DNA copy number was significantly correlated with that of FGF1. Survival of patients with high FGFR4 expressing tumors was significantly shorter that those with low expression(median survival 28 vs 55 month p< 0.001) In a multivariate cox regression model FGFR expression significantly increased risk of death (HR 2.1, p<0.001). FGFR4 expression was significantly higher in all cell lines tested compared to HOSE, OVCA432 cell line in particular had very high expression suggesting amplification. FGF1 was also particularly overexpressed in OVCA432. FGF1 significantly increased cell survival after serum deprivation in all cell lines. Transient knock down of FGFR4 caused significant reduction in cell migration and proliferation in vitro and significantly decreased the proliferative effects of FGF1 in vitro. FGFR1, FGFR4 traps and anti-FGF1 antibodies did not show activity in vitro. OVCA432 transfected with the cignal lenti reporter system revealed significant activation of MAPK, NFkB and WNT pathways, western blotting confirmed the results. Reverse phase protein array (RPPA) analysis also showed activation of MAPK, AKT, WNT pathways and down regulation of E Cadherin. FGFR trap protein significantly reduced tumor growth in vivo in an orthotopic mouse model. Conclusions: Overexpression and amplification of several members of the FGF signaling axis present on the amplicon 5q31-35.3 is a negative prognostic indicator in high grade serous ovarian carcinoma and may drive poor survival associated with that amplicon. Activation of The FGF signaling pathway leads to downstream activation of MAPK, AKT, WNT and NFkB pathways leading to a more aggressive cancer phenotype with increased tumor growth, evasion of apoptosis and increased migration and invasion. Inhibition of FGF pathway in vivo via FGFR trap protein leads to significantly decreased tumor growth in an orthotopic mouse model.
Resumo:
CONTRIBUTION OF ECTODOMAIN MUTATIONS IN EPIDERMAL GROWTH FACTOR RECEPTOR TO SIGNALING IN GLIOBLASTOMA MULTIFORME Publication No._________ Marta Rojas, M.S. Supervisory Professor: Oliver Bögler, Ph.D. The Cancer Genome Atlas (TCGA) has conducted a comprehensive analysis of a large tumor cohort and has cataloged genetic alterations involving primary sequence variations and copy number aberrations of genes involved in key signaling pathways in glioblastoma (GBM). This dataset revealed missense ectodomain point mutations in epidermal growth factor receptor (EGFR), but the biological and clinical significance of these mutations is not well defined in the context of gliomas. In our study, we focused on understanding and defining the molecular mechanisms underlying the functions of EGFR ectodomain mutants. Using proteomic approaches to broadly analyze cell signaling, including antibody array and mass spectrometry-based methods, we found a differential spectrum of tyrosine phosphorylation across the EGFR ectodomain mutations that enabled us to stratify them into three main groups that correlate with either wild type EGFR (EGFR) or the long-studied mutant, EGFRvIII. Interestingly, one mutant shared characteristics of both groups suggesting a continuum of behaviors along which different mutants fall. Surprisingly, no substantial differences were seen in activation of classical downstream signaling pathways such as Akt and S6 pathways between these classes of mutants. Importantly, we demonstrated that ectodomain mutations lead to differential tumor growth capabilities in both in vitro (anchorage independent colony formation) and in vivo conditions (xenografts). Our data from the biological characterization allowed us to categorize the mutants into three main groups: the first group typified by EGFRvIII are mutations with a more aggressive phenotype including R108K and A289T; a second group characterized by a less aggressive phenotype exemplified by EGFR and the T263P mutation; and a third group which shared characteristics from both groups and is exemplified by the mutation A289D. In addition, we treated cells overexpressing the mutants with various agents employed in the clinic including temozolomide, cisplatin and tarceva. We found that cells overexpressing the mutants in general displayed resistance to the treatments. Our findings yield insights that help with the molecular characterization of these mutants. In addition, our results from the drug studies might be valuable in explaining differential responses to specific treatments in GBM patients.
Resumo:
The molecular complex containing the seven transmembrane helix photoreceptor S&barbelow;ensory R&barbelow;hodopsin I&barbelow; (SRI) and transducer protein HtrI (H&barbelow;alobacterial Transducer for SRI&barbelow;) mediates color-sensitive phototaxis responses in the archaeon Halobacterium salinarum. Orange light causes an attractant response by a one-photon reaction and white light (orange + UV light) a repellent response by a two-photon reaction. Three aspects of SRI-HtrI structure/function and the signal transduction pathway were explored. First, the coupling of HtrI to the photoactive site of SRI was analyzed by mutagenesis and kinetic spectroscopy. Second, SRI-HtrI mutations and suppressors were selected and characterized to elucidate the color-sensing mechanism. Third, the signal relay through the transducer-bound histidine kinase was analyzed using an in vitro reconstitution system with known and newly identified taxis components. ^ Twenty-one mutations on HtrI were introduced by site-directed mutagenesis. Several replacements of charged residues perturbed the photochemical kinetics of SRI which led to the finding of a cluster of residues at the membrane/cytoplasm interface in HtrI electrostatically coupled to the photoactive site of SRI. We found by laser-flash kinetic spectroscopy that the transducer and these residues have specific effects on the light-induced proton transfer between the retinal chromophore and the protein. ^ One of the mutations showed an unusual mutant phenotype we called “inverted” signaling, in which the cell produces a repellent response to normally attractant light. Therefore, this mutant (E56Q of HtrI) had lost the color-discrimination by the SRI-HtrI complex. We used suppressor analysis to better understand the phenotype. Certain suppressors resulted in return of attractant responses to orange light but with inversion of the normally repellent response to white light to an attractant response. To explain this and other results, we formulated the Conformational Shuttling model in which the HtrI-SRI complex is poised in a metastable equilibrium of two conformations shifted in opposite directions by orange and white light. We tested this model by behavioral analysis (computerized cell tracking and motion study) of double mutants of inverting and suppressing mutations and the results confirmed the equilibrium-shift explanation. ^ We developed an in vitro system for measuring the effect of purified transducer on the histidine-kinase CheAH that controls the flagellar motor switch. The rate of kinase autophosphorylation was stimulated >2 fold in the reconstitution of the complete signal transduction system from purified components from H. salinarum. The in vitro assay also showed that the kinase activity was reduced in the absence and in the presence of high levels of linker protein CheWH. (Abstract shortened by UMI.) ^
Resumo:
A 1887-bp region at the 5' flank of the human p75 tumor necrosis factor receptor (p75 TNF-R)-encoding gene was found to be active in driving expression of the luc (luciferase-encoding) reporter gene, suggesting that it contains the promoter for the receptor. Rather unexpectedly, a 1827-bp region at the 3' end of the first intron of the p75 TNF-R gene also displayed promoter activity. This activity may be artefactual, reflecting only the presence of an enhancer in this region; yet it also raises the possibility that p75 TNF-R is controlled by more than one promoter and that it encodes various forms of the receptor, or even other proteins. We present here the nucleotide sequences of the 5' flanking and intron regions. Possible implications for the transcriptional regulation of the p75 TNF-R gene are discussed.
Resumo:
We have analyzed the chromatin structure of the porcine tumor necrosis factor gene locus (TNF-alpha and TNF-beta). Nuclei from porcine peripheral blood mononuclear cells were digested with different nucleases. As assessed with micrococcal nuclease, the two TNF genes displayed slightly faster digestion kinetics than bulk DNA. Studies with DNaseI revealed distinct DNaseI hypersensitive sites (DH-sites) within the porcine TNF locus. Four DH-sites could be observed in the promoter and mRNA leader regions of the TNF-beta gene. Two DH-sites could be observed for the TNF-alpha gene, one located in the promoter region close to the TATA-box and the other site in intron 3. This pattern of DH-sites was present independently of the activation state of the cells. Interestingly in a porcine macrophage-like cell line, we found that the TNF-alpha promoter DH-site disappeared and another DH-site appeared in the region of intron 1. Additionally, the DH-site of intron 3 could be enhanced by PMA-stimulation in these cells. TNF-beta sites were not detected in this cell line. However, DH-sites were totally absent in fibroblasts (freshly isolated from testicles) and in porcine kidney cells (PK15 cell line) both of which do not transcribe the TNF genes. Therefore, the pattern of DH-sites corresponds to the transcriptional activity of analyzed cells.
Resumo:
Neoadjuvant platin-based therapy is accepted as a standard therapy for advanced esophageal adenocarcinoma (EAC). Patients who respond have a better survival prognosis, but still a significant number of responder patients die from tumor recurrence. Molecular markers for prognosis in neoadjuvantly treated EAC patients have not been identified yet. We investigated the epidermal growth factor receptor (EGFR) in prognosis and chemotherapy resistance in these patients. Two EAC patient cohorts, either treated by neoadjuvant cisplatin-based chemotherapy followed by surgery (n=86) or by surgical resection (n=46) were analyzed for EGFR protein expression and gene copy number. Data were correlated with clinical and histopathological response, disease-free and overall survival. In case of EGFR overexpression, the prognosis for neoadjuvant chemotherapy responders was poor as in non-responders. Responders had a significantly better disease-free survival than non-responders only if EGFR expression level (p=0.0152) or copy number (p=0.0050) was low. Comparing neoadjuvantly treated patients and primary resection patients, tumors of non-responder patients more frequently exhibited EGFR overexpression, providing evidence that EGFR is a factor for indicating chemotherapy resistance. EGFR overexpression and gene copy number are independent adverse prognostic factors for neoadjuvant chemotherapy-treated EAC patients, particularly for responders. Furthermore, EGFR overexpression is involved in resistance to cisplatin-based neoadjuvant chemotherapy.