857 resultados para Facial Object Based Method
                                
                                
                                
                                
                                
Resumo:
A determinação do tipo facial é importante para o diagnóstico e planejamento ortodôntico, tendo em vista que na atualidade vários protocolos de tratamento utilizam este método para individualizar a terapêutica nos pacientes. O objetivo deste trabalho consistiu em verificar a correlação existente entre o Índice Morfológico da Face e o Vert de Ricketts, entre o Índice Morfológico da Face e o Quociente de Jarabak; também entre o Vert de Ricketts e o Quociente de Jarabak. Outro objetivo foi verificar se há correlação entre o Índice Morfológico da Face, Vert de Ricketts e o Quociente de Jarabak com as grandezas cefalométricas: FMA, Eixo Facial, Sn.GoGn, Sn.Gn e Ar.GoMe. A amostra foi constituída de telerradiografias em norma lateral e de mensurações antopométricas da face de 60 voluntários, sendo 30 do sexo feminino e 30 do sexo masculino. Entre os resultados obtidos observamos correlação entre o Índice Morfológico da Face e o VERT de Ricketts (r = -0,42) e entre o Índice Morfológico da Face e o Quociente de Jarabak (r = -0,32), considerado em ambos os casos como uma fraca correlação negativa. Já na correlação entre o VERT de Ricketts e o Quociente de Jarabak o valor obtido foi de r = 0,61, sendo considerada como uma correlação positiva moderada. Houve uma moderada correlação entre os métodos para determinação dos tipos faciais Índice Morfológico da Face e Quociente de Jarabak com as variáveis cefalométricas. Já para a correlação entre as variáveis cefalométricas e o método para determinação do tipo facial Vert de Ricketts, houve uma forte correlação. Com base nos resultados obtidos concluímos que houve uma concordância fraca entre os métodos Índice Morfológico da Face, Vert de Ricketts e Quociente de Jarabak; e sugerimos que outros estudos devem ser realizados a fim de corroborar com este trabalho para comprovar a aplicabilidade do Índice Antropométrico para a determinação do tipo facial (AU)
                                
Resumo:
The kinematic mapping of a rigid open-link manipulator is a homomorphism between Lie groups. The homomorphisrn has solution groups that act on an inverse kinematic solution element. A canonical representation of solution group operators that act on a solution element of three and seven degree-of-freedom (do!) dextrous manipulators is determined by geometric analysis. Seven canonical solution groups are determined for the seven do! Robotics Research K-1207 and Hollerbach arms. The solution element of a dextrous manipulator is a collection of trivial fibre bundles with solution fibres homotopic to the Torus. If fibre solutions are parameterised by a scalar, a direct inverse funct.ion that maps the scalar and Cartesian base space coordinates to solution element fibre coordinates may be defined. A direct inverse pararneterisation of a solution element may be approximated by a local linear map generated by an inverse augmented Jacobian correction of a linear interpolation. The action of canonical solution group operators on a local linear approximation of the solution element of inverse kinematics of dextrous manipulators generates cyclical solutions. The solution representation is proposed as a model of inverse kinematic transformations in primate nervous systems. Simultaneous calibration of a composition of stereo-camera and manipulator kinematic models is under-determined by equi-output parameter groups in the composition of stereo-camera and Denavit Hartenberg (DH) rnodels. An error measure for simultaneous calibration of a composition of models is derived and parameter subsets with no equi-output groups are determined by numerical experiments to simultaneously calibrate the composition of homogeneous or pan-tilt stereo-camera with DH models. For acceleration of exact Newton second-order re-calibration of DH parameters after a sequential calibration of stereo-camera and DH parameters, an optimal numerical evaluation of DH matrix first order and second order error derivatives with respect to a re-calibration error function is derived, implemented and tested. A distributed object environment for point and click image-based tele-command of manipulators and stereo-cameras is specified and implemented that supports rapid prototyping of numerical experiments in distributed system control. The environment is validated by a hierarchical k-fold cross validated calibration to Cartesian space of a radial basis function regression correction of an affine stereo model. Basic design and performance requirements are defined for scalable virtual micro-kernels that broker inter-Java-virtual-machine remote method invocations between components of secure manageable fault-tolerant open distributed agile Total Quality Managed ISO 9000+ conformant Just in Time manufacturing systems.
                                
Resumo:
A method of determining the spatial pattern of any histological feature in sections of brain tissue which can be measured quantitatively is described and compared with a previously described method. A measurement of a histological feature such as density, area, amount or load is obtained for a series of contiguous sample fields. The regression coefficient (β) is calculated from the measurements taken in pairs, first in pairs of adjacent samples and then in pairs of samples taken at increasing degrees of separation between them, i.e. separated by 2, 3, 4,..., n units. A plot of β versus the degree of separation between the pairs of sample fields reveals whether the histological feature is distributed randomly, uniformly or in clusters. If the feature is clustered, the analysis determines whether the clusters are randomly or regularly distributed, the mean size of the clusters and the spacing of the clusters. The method is simple to apply and interpret and is illustrated using simulated data and studies of the spatial patterns of blood vessels in the cerebral cortex of normal brain, the degree of vacuolation of the cortex in patients with Creutzfeldt-Jacob disease (CJD) and the characteristic lesions present in Alzheimer's disease (AD). Copyright (C) 2000 Elsevier Science B.V.
                                
Resumo:
A novel architecture for microwave/millimeter-wave signal generation and data modulation using a fiber-grating-based distributed feedback laser has been proposed in this letter. For demonstration, a 155.52-Mb/s data stream on a 16.9-GHz subcarrier has been transmitted and recovered successfully. It has been proved that this technology would be of benefit to future microwave data transmission systems.
                                
Resumo:
Quantum dots (Qdots) are fluorescent nanoparticles that have great potential as detection agents in biological applications. Their optical properties, including photostability and narrow, symmetrical emission bands with large Stokes shifts, and the potential for multiplexing of many different colours, give them significant advantages over traditionally used fluorescent dyes. Here, we report the straightforward generation of stable, covalent quantum dot-protein A/G bioconjugates that will be able to bind to almost any IgG antibody, and therefore can be used in many applications. An additional advantage is that the requirement for a secondary antibody is removed, simplifying experimental design. To demonstrate their use, we show their application in multiplexed western blotting. The sensitivity of Qdot conjugates is found to be superior to fluorescent dyes, and comparable to, or potentially better than, enhanced chemiluminescence. We show a true biological validation using a four-colour multiplexed western blot against a complex cell lysate background, and have significantly improved previously reported non-specific binding of the Qdots to cellular proteins.
                                
Resumo:
Jackson System Development (JSD) is an operational software development method which addresses most of the software lifecycle either directly or by providing a framework into which more specialised techniques can fit. The method has two major phases: first an abstract specification is derived that is in principle executable; second the specification is implemented using a variety of transformations. The object oriented paradigm is based on data abstraction and encapsulation coupled to an inheritance architecture that is able to support software reuse. Its claims of improved programmer productivity and easier program maintenance make it an important technology to be considered for building complex software systems. The mapping of JSD specifications into procedural languages typified by Cobol, Ada, etc., involves techniques such as inversion and state vector separation to produce executable systems of acceptable performance. However, at present, no strategy exists to map JSD specifications into object oriented languages. The aim of this research is to investigate the relationship between JSD and the object oriented paradigm, and to identify and implement transformations capable of mapping JSD specifications into an object oriented language typified by Smalltalk-80. The direction which the transformational strategy follows is one whereby the concurrency of a specification is removed. Two approaches implementing inversion - an architectural transformation resulting in a simulated coroutine mechanism being generated - are described in detail. The first approach directly realises inversions by manipulating Smalltalk-80 system contexts. This is possible in Smalltalk-80 because contexts are first class objects and are accessible to the user like any other system object. However, problems associated with this approach are expounded. The second approach realises coroutine-like behaviour in a structure called a `followmap'. A followmap is the results of a transformation on a JSD process in which a collection of followsets is generated. Each followset represents all possible state transitions a process can undergo from the current state of the process. Followsets, together with exploitation of the class/instance mechanism for implementing state vector separation, form the basis for mapping JSD specifications into Smalltalk-80. A tool, which is also built in Smalltalk-80, supports these derived transformations and enables a user to generate Smalltalk-80 prototypes of JSD specifications.
                                
Resumo:
A novel architecture for microwave/millimeter-wave signal generation and data modulation using a fiber-grating-based distributed feedback laser has been proposed in this letter. For demonstration, a 155.52-Mb/s data stream on a 16.9-GHz subcarrier has been transmitted and recovered successfully. It has been proved that this technology would be of benefit to future microwave data transmission systems. © 2006 IEEE.
                                
Resumo:
Hierarchical knowledge structures are frequently used within clinical decision support systems as part of the model for generating intelligent advice. The nodes in the hierarchy inevitably have varying influence on the decisionmaking processes, which needs to be reflected by parameters. If the model has been elicited from human experts, it is not feasible to ask them to estimate the parameters because there will be so many in even moderately-sized structures. This paper describes how the parameters could be obtained from data instead, using only a small number of cases. The original method [1] is applied to a particular web-based clinical decision support system called GRiST, which uses its hierarchical knowledge to quantify the risks associated with mental-health problems. The knowledge was elicited from multidisciplinary mental-health practitioners but the tree has several thousand nodes, all requiring an estimation of their relative influence on the assessment process. The method described in the paper shows how they can be obtained from about 200 cases instead. It greatly reduces the experts’ elicitation tasks and has the potential for being generalised to similar knowledge-engineering domains where relative weightings of node siblings are part of the parameter space.
                                
Resumo:
Three experiments assessed the development of children's part and configural (part-relational) processing in object recognition during adolescence. In total, 312 school children aged 7-16 years and 80 adults were tested in 3-alternative forced choice (3-AFC) tasks. They judged the correct appearance of upright and inverted presented familiar animals, artifacts, and newly learned multipart objects, which had been manipulated either in terms of individual parts or part relations. Manipulation of part relations was constrained to either metric (animals, artifacts, and multipart objects) or categorical (multipart objects only) changes. For animals and artifacts, even the youngest children were close to adult levels for the correct recognition of an individual part change. By contrast, it was not until 11-12 years of age that they achieved similar levels of performance with regard to altered metric part relations. For the newly learned multipart objects, performance was equivalent throughout the tested age range for upright presented stimuli in the case of categorical part-specific and part-relational changes. In the case of metric manipulations, the results confirmed the data pattern observed for animals and artifacts. Together, the results provide converging evidence, with studies of face recognition, for a surprisingly late consolidation of configural-metric relative to part-based object recognition.
                                
Resumo:
In this study, we investigate the problem of reconstruction of a stationary temperature field from given temperature and heat flux on a part of the boundary of a semi-infinite region containing an inclusion. This situation can be modelled as a Cauchy problem for the Laplace operator and it is an ill-posed problem in the sense of Hadamard. We propose and investigate a Landweber-Fridman type iterative method, which preserve the (stationary) heat operator, for the stable reconstruction of the temperature field on the boundary of the inclusion. In each iteration step, mixed boundary value problems for the Laplace operator are solved in the semi-infinite region. Well-posedness of these problems is investigated and convergence of the procedures is discussed. For the numerical implementation of these mixed problems an efficient boundary integral method is proposed which is based on the indirect variant of the boundary integral approach. Using this approach the mixed problems are reduced to integral equations over the (bounded) boundary of the inclusion. Numerical examples are included showing that stable and accurate reconstructions of the temperature field on the boundary of the inclusion can be obtained also in the case of noisy data. These results are compared with those obtained with the alternating iterative method.
                                
Resumo:
In the face of global population growth and the uneven distribution of water supply, a better knowledge of the spatial and temporal distribution of surface water resources is critical. Remote sensing provides a synoptic view of ongoing processes, which addresses the intricate nature of water surfaces and allows an assessment of the pressures placed on aquatic ecosystems. However, the main challenge in identifying water surfaces from remotely sensed data is the high variability of spectral signatures, both in space and time. In the last 10 years only a few operational methods have been proposed to map or monitor surface water at continental or global scale, and each of them show limitations. The objective of this study is to develop and demonstrate the adequacy of a generic multi-temporal and multi-spectral image analysis method to detect water surfaces automatically, and to monitor them in near-real-time. The proposed approach, based on a transformation of the RGB color space into HSV, provides dynamic information at the continental scale. The validation of the algorithm showed very few omission errors and no commission errors. It demonstrates the ability of the proposed algorithm to perform as effectively as human interpretation of the images. The validation of the permanent water surface product with an independent dataset derived from high resolution imagery, showed an accuracy of 91.5% and few commission errors. Potential applications of the proposed method have been identified and discussed. The methodology that has been developed 27 is generic: it can be applied to sensors with similar bands with good reliability, and minimal effort. Moreover, this experiment at continental scale showed that the methodology is efficient for a large range of environmental conditions. Additional preliminary tests over other continents indicate that the proposed methodology could also be applied at the global scale without too many difficulties
 
                    