928 resultados para FUNGAL-INFECTIONS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Acute respiratory infections (ARI) are frequent in children and complications can occur in patients with chronic diseases. We evaluated the frequency and impact of ARI and influenza-like illness (ILI) episodes on disease activity, and the immunogenicity and safety of influenza vaccine in a cohort of juvenile idiopathic arthritis (JIA) patients. Methods Surveillance of respiratory viruses was conducted in JIA patients during ARI season (March to August) in two consecutive years: 2007 (61 patients) and 2008 (63 patients). Patients with ARI or ILI had respiratory samples collected for virus detection by real time PCR. In 2008, 44 patients were immunized with influenza vaccine. JIA activity index (ACRPed30) was assessed during both surveillance periods. Influenza hemagglutination inhibition antibody titers were measured before and 30-40 days after vaccination. Results During the study period 105 ARI episodes were reported and 26.6% of them were ILI. Of 33 samples collected, 60% were positive for at least one virus. Influenza and rhinovirus were the most frequently detected, in 30% of the samples. Of the 50 JIA flares observed, 20% were temporally associated to ARI. Influenza seroprotection rates were higher than 70% (91-100%) for all strains, and seroconversion rates exceeded 40% (74-93%). In general, response to influenza vaccine was not influenced by therapy or disease activity, but patients using anti-TNF alpha drugs presented lower seroconversion to H1N1 strain. No significant differences were found in ACRPed30 after vaccination and no patient reported ILI for 6 months after vaccination. Conclusion ARI episodes are relatively frequent in JIA patients and may have a role triggering JIA flares. Trivalent split influenza vaccine seems to be immunogenic and safe in JIA patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION: In recent years, hantavirus infections producing severe diseases have obtained an increased attention from public health authorities from the countries of Eurasia to the Americas. Brazil has reported 1,300 cases of hantavirus cardiopulmonary syndrome (HCPS) from 1993 to 2010, with about 80 of them occurring in the northeast of the State of São Paulo, with 48% fatality rate. Araraquara virus was the causative agent of HCPS in the region. Considering that hantaviruses causing human disease in the Americas were unknown until 1993, we have looked for hantavirus infections in the population of Cássia dos Coqueiros county, northeast of the State of São Paulo, Brazil, before this time. This county has about 2,800 inhabitants and an economy based on agriculture, including cultivation of Brachiaria decumbens grass. The grass seeds are an important rodent attraction, facilitating transmission of hantavirus to man. Four HCPS cases were reported so far in the county. METHODS: In this study, 1,876 sera collected from 1987 to 1990 were tested for IgG to hantavirus by IgG-ELISA, using the N recombinant protein of Araraquara virus as antigen. RESULTS: Positive results were observed in 89 (4.7%) samples, which were all collected in 1987. The positivity among urban inhabitants was 5.3%, compared with 4.3% among those living in rural areas. CONCLUSIONS: Our results showed that hantavirus infections occurred in Cássia dos Coqueiros, completely unrecognized, even before hantaviruses were described in the Americas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present investigation we evaluate methods for the isolation and growth of marine-derived fungal strains in artificial media for the production of secondary metabolites. Inoculation of marine macroorganisms fragments in Petri dishes proved to be the most convenient procedure for the isolation of the largest number of strains. Among the growth media used, 3% malt extract showed the best result for strains isolation and growth, and yielded the largest number of strains from marine macroorganisms. The percentage of strains isolated using each of the growth media which yielded cytotoxic and/or antibiotic extracts was in the range of 23-35%, regardless of the growth media used. Further investigation of extracts obtained from different marine-derived fungal strains yielded several bioactive secondary metabolites, among which (E)-4-methoxy-5-(3-methoxybut-1-enyl)-6-methyl-2H-pyran-2-one is a new metabolite isolated from the Penicillium paxilli strain Ma(G)K.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Viruses are the major cause of lower respiratory tract infections in childhood and the main viruses involved are Human Respiratory Syncytial Virus (HRSV), Human Metapneumovirus (HMPV), Influenzavirus A and B (FLUA and FLUB), Human Parainfluenza Virus 1, 2 and 3 (HPIV1, 2 and 3) and Human Rhinovirus (HRV). The purposes of this study were to detect respiratory viruses in hospitalized children younger than six years and identify the influence of temperature and relative air humidity on the detected viruses. Samples of nasopharyngeal washes were collected from hospitalized children between May/2004 and September/2005. Methods of viral detection were RT-PCR, PCR and HRV amplicons were confirmed by hybridization. Results showed 54% (148/272) of viral positivity. HRSV was detected in 29% (79/272) of the samples; HRV in 23.1% (63/272); HPIV3 in 5.1% (14/272); HMPV in 3.3% (9/272); HPIV1 in 2.9% (8/272); FLUB in 1.4% (4/272), FLUA in 1.1% (3/272), and HPIV2 in 0.3% (1/272). The highest detection rates occurred mainly in the spring 2004 and in the autumn 2005. It was observed that viral respiratory infections tend to increase as the relative air humidity decreases, showing significant association with monthly averages of minimal temperature and minimal relative air humidity. In conclusion, viral respiratory infections vary according to temperature and relative air humidity and viral respiratory infections present major incidences it coldest and driest periods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pathogenic strains of Escherichia coli are the most common bacteria associated with urinary tract infections in both humans and companion animals. Standard biochemical tests may be useful in demonstrating detailed phenotypical characteristics of these strains. Thirteen strains of E. coli isolated from dogs with UTIs were submitted to biochemical tests, serotyping for O and H antigens and antimicrobial resistance testing. Furthermore, the presence of papC, sfa, and afa genes was evaluated by PCR, and genetic relationships were established using enterobacterial repetitive intergenic consensus PCR (ERIC-PCR). The antimicrobial that showed the highest resistance rate among the isolates was nalidixic acid (76.9%), followed by cephalotin (69.2%), sulfamethoxazole + trimethoprim (61.5%), tetracycline (61.5%), streptomycin (53.8%), ciprofloxacin (53.8%), ampicillin (46.2%), gentamicin (30.8%) and chloramphenicol (23.1%). No isolate was resistant either to meropenem or nitrofurantoin. Among the five clusters that were identified using ERIC-PCR, one cluster (A) had only one strain, which belonged to a serotype with zoonotic potential (O6:H31) and showed the genes papC+, sfa+, afa-. Strains with the genes papC-, sfa+, afa- were found in two other clusters (C and D), whereas all strains in clusters B and E possessed papC-, sfa-, afa- genes. Sucrose and raffinose phenotypic tests showed some ability in discriminating clusters A, B and C from clusters D and E.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: Enterococcus faecalis is a member of the mammalian gastrointestinal microbiota but has been considered a leading cause of hospital-acquired infections. In the oral cavity, it is commonly detected from root canals of teeth with failed endodontic treatment. However, little is known about the virulence and genetic relatedness among E. faecalis isolates from different clinical sources. This study compared the presence of enterococcal virulence factors among root canal strains and clinical isolates from hospitalized patients to identify virulent clusters of E. faecalis. Methods: Multilocus sequence typing analysis was used to determine genetic lineages of 40 E. faecalis clinical isolates from different sources. Virulence clusters were determined by evaluating capsule (cps) locus polymorphisms, pathogenicity island gene content, and antibiotic resistance genes by polymerase chain reaction. Results: The clinical isolates from hospitalized patients formed a phylogenetically separate group and were mostly grouped in the clonal complex 2, which is a known virulent cluster of E. faecalis that has caused infection outbreaks globally. The clonal complex 2 group comprised capsule-producing strains harboring multiple antibiotic resistance and pathogenicity island genes. On the other hand, the endodontic isolates were more diverse and harbored few virulence and antibiotic resistance genes. In particular, although more closely related to isolates from hospitalized patients, capsuleproducing E. faecalis strains from root canals did not carry more virulence/antibiotic genes than other endodontic isolates. Conclusions: E. faecalis isolates from endodontic infections have a genetic and virulence profile different from pathogenic clusters of hospitalized patients’ isolates, which is most likely due to niche specialization conferred mainly by variable regions in the genome.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Paracoccidoides brasiliensis adhesion to lung epithelial cells is considered an essential event for the establishment of infection and different proteins participate in this process. One of these proteins is a 30 kDa adhesin, pI 4.9 that was described as a laminin ligand in previous studies, and it was more highly expressed in more virulent P. brasiliensis isolates. This protein may contribute to the virulence of this important fungal pathogen. Using Edman degradation and mass spectrometry analysis, this 30 kDa adhesin was identified as a 14-3-3 protein. These proteins are a conserved group of small acidic proteins involved in a variety of processes in eukaryotic organisms. However, the exact function of these proteins in some processes remains unknown. Thus, the goal of the present study was to characterize the role of this protein during the interaction between the fungus and its host. To achieve this goal, we cloned, expressed the 14-3-3 protein in a heterologous system and determined its subcellular localization in in vitro and in vivo infection models. Immunocytochemical analysis revealed the ubiquitous distribution of this protein in the yeast form of P. brasiliensis, with some concentration in the cytoplasm. Additionally, this 14-3-3 protein was also present in P. brasiliensis cells at the sites of infection in C57BL/6 mice intratracheally infected with P. brasiliensis yeast cells for 72 h (acute infections) and 30 days (chronic infection). An apparent increase in the levels of the 14-3-3 protein in the cell wall of the fungus was also noted during the interaction between P. brasiliensis and A549 cells, suggesting that this protein may be involved in host-parasite interactions, since inhibition assays with the protein and this antibody decreased P. brasiliensis adhesion to A549 epithelial cells. Our data may lead to a better understanding of P. brasiliensis interactions with host tissues and paracoccidioidomycosis pathogenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The principal capsular component of Cryptococcus neoformans, glucuronoxylomannan (GXM), interacts with surface glycans, including chitin-like oligomers. Although the role of GXM in cryptococcal infection has been well explored, there is no information on how chitooligomers affect fungal pathogenesis. In this study, surface chitooligomers of C. neoformans were blocked through the use of the wheat germ lectin (WGA) and the effects on animal pathogenesis, interaction with host cells, fungal growth and capsule formation were analyzed. Treatment of C. neoformans cells with WGA followed by infection of mice delayed mortality relative to animals infected with untreated fungal cells. This observation was associated with reduced brain colonization by lectin-treated cryptococci. Blocking chitooligomers also rendered yeast cells less efficient in their ability to associate with phagocytes. WGA did not affect fungal viability, but inhibited GXM release to the extracellular space and capsule formation. In WGA-treated yeast cells, genes that are involved in capsule formation and GXM traffic had their transcription levels decreased in comparison with untreated cells. Our results suggest that cellular pathways required for capsule formation and pathogenic mechanisms are affected by blocking chitin-derived structures at the cell surface of C. neoformans. Targeting chitooligomers with specific ligands may reveal new therapeutic alternatives to control cryptococcosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The two classical forms of human trypanosomoses are sleeping sickness due to Trypanosoma brucei gambiense or T. brucei rhodesiense, and Chagas disease due to T. cruzi. However, a number of atypical human infections caused by other T. species (or sub-species) have been reported, namely due to T. brucei brucei, T. vivax, T. congolense, T. evansi, T. lewisi, and T. lewisi-like. These cases are reviewed here. Some infections were transient in nature, while others required treatments that were successful in most cases, although two cases were fatal. A recent case of infection due to T. evansi was related to a lack of apolipoprotein L-I, but T. lewisi infections were not related to immunosuppression or specific human genetic profiles. Out of 19 patients, eight were confirmed between 1974 and 2010, thanks to improved molecular techniques. However, the number of cases of atypical human trypanosomoses might be underestimated. Thus, improvement, evaluation of new diagnostic tests, and field investigations are required for detection and confirmation of these atypical cases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This PhD thesis discusses the rationale for design and use of synthetic oligosaccharides for the development of glycoconjugate vaccines and the role of physicochemical methods in the characterization of these vaccines. The study concerns two infectious diseases that represent a serious problem for the national healthcare programs: human immunodeficiency virus (HIV) and Group A Streptococcus (GAS) infections. Both pathogens possess distinctive carbohydrate structures that have been described as suitable targets for the vaccine design. The Group A Streptococcus cell membrane polysaccharide (GAS-PS) is an attractive vaccine antigen candidate based on its conserved, constant expression pattern and the ability to confer immunoprotection in a relevant mouse model. Analysis of the immunogenic response within at-risk populations suggests an inverse correlation between high anti-GAS-PS antibody titres and GAS infection cases. Recent studies show that a chemically synthesized core polysaccharide-based antigen may represent an antigenic structural determinant of the large polysaccharide. Based on GAS-PS structural analysis, the study evaluates the potential to exploit a synthetic design approach to GAS vaccine development and compares the efficiency of synthetic antigens with the long isolated GAS polysaccharide. Synthetic GAS-PS structural analogues were specifically designed and generated to explore the impact of antigen length and terminal residue composition. For the HIV-1 glycoantigens, the dense glycan shield on the surface of the envelope protein gp120 was chosen as a target. This shield masks conserved protein epitopes and facilitates virus spread via binding to glycan receptors on susceptible host cells. The broadly neutralizing monoclonal antibody 2G12 binds a cluster of high-mannose oligosaccharides on the gp120 subunit of HIV-1 Env protein. This oligomannose epitope has been a subject to the synthetic vaccine development. The cluster nature of the 2G12 epitope suggested that multivalent antigen presentation was important to develop a carbohydrate based vaccine candidate. I describe the development of neoglycoconjugates displaying clustered HIV-1 related oligomannose carbohydrates and their immunogenic properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In 2010, 2011 and 2012 growing seasons, the occurrence of the ascomycetes Podosphaera fusca and Golovinomyces orontii, causal agents of powdery mildew disease, was monitored on cultivated cucurbits located in Bologna and Mantua provinces to determine the epidemiology of the species. To identify the pathogens, both morphological and molecular identifications were performed on infected leaf samples and a Multiplex-PCR was performed to identify the mating type genes of P. fusca isolates. The investigations indicated a temporal succession of the two species with the earlier infections caused by G. orontii, that seems to be the predominant species till the middle of July when it progressively disappears and P. fusca becomes the main species infecting cucurbits till the end of October. The temporal variation is likely due to the different overwintering strategies of the two species instead of climatic conditions. Only chasmothecia of P. fusca were recorded and mating type alleles ratio tended to be 1:1. Considering that only chasmothecia of P. fusca were found, molecular-genetic analysis were carried out to find some evidence of recombination within this species by MLST and AFLP methods. Surprisingly, no variations were observed within isolates for the 8 MLST markers used. According to this result, AFLP analysis showed a high similarity within isolates, with SM similarity coefficient ranging between 0.91-1.00 and also, sequencing of 12 polymorphic bands revealed identity to some gene involved in mutation and selection. The results suggest that populations of P. fusca are likely to be a clonal population with some differences among isolates probably due to agricultural practices such as fungicides treatments and cultivated hosts. Therefore, asexual reproduction, producing a lot of fungal biomass that can be easily transported by wind, is the most common and useful way to the spread and colonization of the pathogen.