927 resultados para FRIZZLED MOTIF


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ability to generate very stable assemblies via non-covalent interactions has enabled materials to be constructed that were not feasible via traditional covalent bond formation processes. A series of low molecular mass bisurethane and bisurea polymers have been developed that form stable self-assembled networks through hydrogen bonding interactions. Thermo-responsive polymers were generated by end-capping poly(ethylene-co-butylene) or polybutadiene chains with the bisurethane or bisurea motif. Microphase separation is observed via TEM and small-angle X-ray scattering (SAXS) for the modified pseudo polymers and significant differences in the temperature dependence of microphase separation are analysed via SAXS. The importance of the polarity of the end groups is manifested in distinct temperature-dependent microphase separation behaviour. Information on the local hydrogen bonding structure is provided by wide-angle X-ray scattering and variable temperature FTI

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The EfeUOB system of Escherichia coli is a tripartite, low pH, ferrous iron transporter. It resembles the high-affinity iron transporter (Ftr1p-Fet3p) of yeast in that EfeU is homologous to Ftr1p, an integral-membrane iron-permease. However, EfeUOB lacks an equivalent of the Fet3p component—the multicopper oxidase with three cupredoxin-like domains. EfeO and EfeB are periplasmic but their precise roles are unclear. EfeO consists primarily of a C-terminal peptidase-M75 domain with a conserved ‘HxxE’ motif potentially involved in metal binding. The smaller N-terminal domain (EfeO-N) is predicted to be cupredoxin (Cup) like, suggesting a previously unrecognised similarity between EfeO and Fet3p. Our structural modelling of the E. coli EfeO Cup domain identifies two potential metal-binding sites. Site I is predicted to bind Cu2+ using three conserved residues (C41 and 103, and E66) and M101. Of these, only one (C103) is conserved in classical cupredoxins where it also acts as a Cu ligand. Site II most probably binds Fe3+ and consists of four well conserved surface Glu residues. Phylogenetic analysis indicates that the EfeO-Cup domains form a novel Cup family, designated the ‘EfeO-Cup’ family. Structural modelling of two other representative EfeO-Cup domains indicates that different subfamilies employ distinct ligand sets at their proposed metal-binding sites. The ~100 efeO homologues in the bacterial sequence databases are all associated with various iron-transport related genes indicating a common role for EfeO-Cup proteins in iron transport, supporting a new copper-iron connection in biology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The nuclear magnetic resonance (NMR) structure of a globular domain of residues 1071 to 1178 within the previously annotated nucleic acid-binding region (NAB) of severe acute respiratory syndrome coronavirus nonstructural protein 3 (nsp3) has been determined, and N- and C-terminally adjoining polypeptide segments of 37 and 25 residues, respectively, have been shown to form flexibly extended linkers to the preceding globular domain and to the following, as yet uncharacterized domain. This extension of the structural coverage of nsp3 was obtained from NMR studies with an nsp3 construct comprising residues 1066 to 1181 [ nsp3(1066-1181)] and the constructs nsp3(1066-1203) and nsp3(1035-1181). A search of the protein structure database indicates that the globular domain of the NAB represents a new fold, with a parallel four-strand beta-sheet holding two alpha-helices of three and four turns that are oriented antiparallel to the beta-strands. Two antiparallel two-strand beta-sheets and two 3(10)-helices are anchored against the surface of this barrel-like molecular core. Chemical shift changes upon the addition of single-stranded RNAs (ssRNAs) identified a group of residues that form a positively charged patch on the protein surface as the binding site responsible for the previously reported affinity for nucleic acids. This binding site is similar to the ssRNA-binding site of the sterile alpha motif domain of the Saccharomyces cerevisiae Vts1p protein, although the two proteins do not share a common globular fold.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: The hepatitis C virus (HCV) non-structural 5A protein (NS5A) contains a highly conserved C-terminal polyproline motif with the consensus sequence Pro-X-X- Pro-X-Arg that is able to interact with the Src-homology 3 (SH3) domains of a variety of cellular proteins. Results: To understand this interaction in more detail we have expressed two N-terminally truncated forms of NS5A in E. coli and examined their interactions with the SH3 domain of the Src-family tyrosine kinase, Fyn. Surface plasmon resonance analysis revealed that NS5A binds to the Fyn SH3 domain with what can be considered a high affinity SH3 domain-ligand interaction (629 nM), and this binding did not require the presence of domain I of NS5A (amino acid residues 32-250). Mutagenic analysis of the Fyn SH3 domain demonstrated the requirement for an acidic cluster at the C-terminus of the RT-Src loop of the SH3 domain, as well as several highly conserved residues previously shown to participate in SH3 domain peptide binding. Conclusion: We conclude that the NS5A: Fyn SH3 domain interaction occurs via a canonical SH3 domain binding site and the high affinity of the interaction suggests that NS5A would be able to compete with cognate Fyn ligands within the infected cell.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Natural killer (NK) cell recognition of influenza virus-infected cells involves hemagglutinin (HA) binding to sialic acid (SA) on activating NK receptors. SA also acts as a receptor for the binding of influenza virus to its target host cells. The SA binding properties of H3N2 influenza viruses have been observed to change during circulation in humans: recent isolates are unable to agglutinate chicken red blood cells and show reduced affinity for synthetic glycopolymers representing SA-alpha-2,3-lactose (3'SL-PAA) and SA-alpha-2,6-N-acetyl lactosamine (6'SLN-PAA) carbohydrates. Here, NK lysis of cells infected with human H3N2 influenza viruses isolated between 1969 and 2003 was analyzed. Cells infected with recent isolates (1999 to 2003) were found to be lysed less effectively than cells infected with older isolates (1969 to 1996). This change occurred concurrently with the acquisition of two new potential glycosylation site motifs in RA. Deletion of the potential glycosylation site motif at 133 to 135 in HA1 from a recent isolate partially restored the agglutination phenotype to a recombinant virus, indicating that the HA-SA interaction is inhibited by the glycosylation modification. Deletion of either of the recently acquired potential glycosylation sites from HA led to increased NK lysis of cells infected with recombinant viruses carrying modified HA. These results indicate that alterations in RA glycosylation may affect NK cell recognition of influenza virus-infected cells in addition to virus binding to host cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Although H5N1 avian influenza viruses pose the most obvious imminent pandemic threat, there have been several recent zoonotic incidents involving transmission of H7 viruses to humans. Vaccines are the primary public health defense against pandemics, but reliance on embryonated chickens eggs to propagate vaccine and logistic problems posed by the use of new technology may slow our ability to respond rapidly in a pandemic situation. Objectives: We sought to generate an H7 candidate vaccine virus suitable for administration to humans whose generation and amplification avoided the use of eggs. Methods: We generated a suitable H7 vaccine virus by reverse genetics. This virus, known as RD3, comprises the internal genes of A/Puerto Rico/8/34 with surface antigens of the highly pathogenic avian strain A/Chicken/Italy/13474/99 (H7N1). The multi-basic amino acid site in the HA gene, associated with high pathogenicity in chickens, was removed. Results: The HA modification did not alter the antigenicity of the virus and the resultant single basic motif was stably retained following several passages in Vero and PER. C6 cells. RD3 was attenuated for growth in embryonated eggs, chickens, and ferrets. RD3 induced an antibody response in infected animals reactive against both the homologous virus and other H7 influenza viruses associated with recent infection by H7 viruses in humans. Conclusions: This is the first report of a candidate H7 vaccine virus for use in humans generated by reverse genetics and propagated entirely in mammalian tissue culture. The vaccine has potential use against a wide range of H7 strains.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The DcuS-DcuR system of Escherichia coli is a two-component sensor-regulator that controls gene expression in response to external C-4-dicarboxylates and citrate. The DcuS protein is particularly interesting since it contains two PAS domains, namely a periplasmic C-4-dicarboxylate-sensing PAS domain (PASp) and a cytosolic PAS domain (PASc) of uncertain function. For a study of the role of the PASc domain, three different fragments of DcuS were overproduced and examined: they were PASc-kinase, PASc, and kinase. The two kinase-domain-containing fragments were autophosphorylated by [gamma-P-32]ATP. The rate was not affected by fumarate or succinate, supporting the role of the PASp domain in C-4-dicarboxylate sensing. Both of the phosphorylated DcuS constructs were able to rapidly pass their phosphoryl groups to DcuR, and after phosphorylation, DcuR dephosphorylated rapidly. No prosthetic group or significant quantity of metal was found associated with either of the PASc-containing proteins. The DNA-binding specificity of DcuR was studied by use of the pure protein. It was found to be converted from a monomer to a dimer upon acetylphosphate treatment, and native polyacrylamide gel electrophoresis suggested that it can oligomerize. DcuR specifically bound to the promoters of the three known DcuSR-regulated genes (dctA, dcuB, and frdA), with apparent K(D)s of 6 to 32 muM for untreated DcuR and less than or equal to1 to 2 muM for the acetylphosphate-treated form. The binding sites were located by DNase I footprinting, allowing a putative DcuR-binding motif [tandemly repeated (T/A)(A/T)(T/C)(A/T)AA sequences] to be identified. The DcuR-binding sites of the dcuB, dctA, and frdA genes were located 27, 94, and 86 bp, respectively, upstream of the corresponding +1 sites, and a new promoter was identified for dcuB that responds to DcuR.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lipoxygenases (LOX) contribute to vascular disease and inflammation through generation of bioactive lipids, including 12-hydro(pero xyeicosatetraenoic acid (12-H(P)ETE). The physiological mechanisms that acutely control LOX product generation in mammalian cells are uncharacterized. Human platelets that contain a 12-LOX isoform (p12-LOX) were used to define pathways that activate H(P)ETE synthesis in the vasculature. Collagen and collagen-related peptide (CRP) (1 to 10 g/mL) acutely induced platelet 12-H(P)ETE synthesis. This implicated the collagen receptor glycoprotein VI (GPVI), which signals via the immunoreceptor-based activatory motif (ITAM)- containing FcR chain. Conversely, thrombin only activated at high concentrations ( 0.2 U/mL), whereas U46619 and ADP alone were ineffective. Collagen or CRP-stimulated 12-H(P)ETE generation was inhibited by staurosporine, PP2, wortmannin, BAPTA/AM, EGTA, and L-655238, implicating src-tyrosine kinases, PI3-kinase, Ca2 mobilization, and p12-LOX translocation. In contrast, protein kinase C (PKC) inhibition potentiated 12-H(P)ETE generation. Finally, activation of the immunoreceptor tyrosine-based inhibitory motif (ITIM)– containing platelet endothelial cell adhesion molecule (PECAM-1) inhibited p12-LOX product generation. This study characterizes a receptor-dependent pathway for 12-H(P)ETE synthesis via the collagen receptor GPVI, which is negatively regulated by PECAM-1 and PKC, and demonstrates a novel link between immune receptor signaling and lipid mediator generation in the vasculature. (Circ Res. 2004;94:1598-1605.)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The cupin superfamily of proteins, named on the basis of a conserved β-barrel fold (‘cupa’ is the Latin term for a small barrel), was originally discovered using a conserved motif found within germin and germin-like proteins from higher plants. Previous analysis of cupins had identified some 18 different functional classes that range from single-domain bacterial enzymes such as isomerases and epimerases involved in the modification of cell wall carbohydrates, through to two-domain bicupins such as the desiccation-tolerant seed storage globulins, and multidomain transcription factors including one linked to the nodulation response in legumes. Recent advances in comparative genomics, and the resolution of many more 3-D structures have now revealed that the largest subset of the cupin superfamily is the 2-oxyglutarate-Fe2+ dependent dioxygenases. The substrates for this subclass of enzyme are many and varied and in total amount to probably 50–100 different biochemical reactions, including several involved in plant growth and development. Although the majority of enzymatic cupins contain iron as an active site metal, other members contain either copper, zinc, cobalt, nickel or manganese ions as a cofactor, with each cofactor allowing a different type of chemistry to occur within the conserved tertiary structure. This review discusses the range of structures and functions found in this most diverse of superfamilies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report four human tachykinins, endokinins A, B, C, and D (EKA-D), encoded from a single tachykinin precursor 4 gene that generates four mRNAs (alpha, beta, gamma, and delta). Tachykinin 4 gene expression was detected primarily in adrenal gland and in the placenta, where, like neurokinin B, significant amounts of EKB-like immunoreactivity were detected. EKA/B 10-mers displayed equivalent affinity for the three tachykinin receptors as substance P (SP), whereas a 32-mer N-terminal extended form of EKB was significantly more potent than EKA/B or SP. EKC/D, which possess a previously uncharacterized tachykinin motif, FQGLL-NH2, displayed low potency, EKA/B displayed identical hemodynamic effects to SP in rats, causing short-lived falls in mean arterial blood pressure associated with tachycardia, mesenteric vasoconstriction, and marked hindquarter vasodilatation. Thus, EKA/B could be the endocrine/paracrine agonists at peripheral SP receptors and there may be as yet an unidentified receptor(s) for EKC/D.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Single crystal X-ray diffraction studies reveal that three hexapeptides with general formula Boc-Ile-Aib-Xx-Ile-Aib-Yy-OMe, where Xx and Yy are Leu in peptide I, Len and Phe in peptide II, and Phe and Leu in peptide III, respectively, adopt equivalent conformations that can be described as mixed 3(10)/alpha-helice with two 4 -> 1 and two 5 -> 1 intramolecular N-H center dot center dot center dot O=C H-bonds. The peptides do not generate any helixterminating Schellman motif despite having Aib at the penultimate position from C-terminus. In the crystalline state, the helices are packed in head-to-tail fashion through intermolecular hydrogen bonds to create supramolecular helical structures. The CD Studies of the three hexapeptides in acetonitrile indicate that they are folded in well-developed 3(10)-helical structures. NMR studies of peptide I in CDCl3 also suggest the formation of a homogeneous 3 m-helical structure. The field emission scanning electron microscopic (FE-SEM) images of peptide 11 in the solid state reveal a non-twisted ribbon-like morphology, which is formed through lateral association of non-twisted filaments. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A series of water-soluble synthetic dipeptides (1-3) with an N-terminally located beta-alanine residue, beta-alanyl-L-valine (1), beta-alanyl-L-isoleucine (2), and beta-alanyl-L-phenylalanine (3, form hydrogen-bonded supramolecular double helices with a pitch length of 1 nm, whereas the C-terminally positioned beta-alanine containing dipeptide (4), L-phenylalanyl-beta-alanine, does not form a supramolecular double helical structure. beta-Ala-Xaa (Xaa = Val/Ile/Phe) can be regarded as a new motif for the formation of supramolecular double helical structures in the solid state.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biologically-inspired peptide sequences have been explored as auxiliaries to mediate self-assembly of synthetic macromolecules into hierarchically organized solution and solid state nanostructures. Peptide sequences inspired by the coiled coil motif and "switch" peptides, which can adopt both amphiphilic alpha-helical and beta-strand conformations, were conjugated to poly(ethylene glycol) (PEG). The solution and solid state self-assembly of these materials was investigated using a variety of spectroscopic, scattering and microscopic techniques. These experiments revealed that the folding and organization properties of the peptide sequences are retained upon conjugation of PEG and that they provide the driving force for the formation of the different nanoscale structures which were observed. The possibility of using defined peptide sequences to direct structure formation of synthetic polymers together with the potential of peptide sequences to induce a specific biological response offers interesting prospects for the development of novel self-assembled and biologically active materials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A 2D porous material, Cu-3(tmen)(3)(tma)(2)(H2O)(2)(.)6.5H(2)O [tmen = N,N,N',N'-tetramethylethane-1,2-diamine; tmaH(3) = 1,3,5-benzenetricarboxylic acid/trimesic acid], has been synthesized and characterized by X-ray single crystal analysis, variable temperature magnetic measurements, IR spectra and XRPD pattern. The complex consists of 2D layers built by three crystallographically independent Cu(tmen) moieties bridged by tma anions. Of the three copper ions, Cu(1) and Cu(2) present distorted square pyramidal coordination geometry, while the third exhibits a severely distorted octahedral environment. The Cu(1)(tmen) and Cu(2)(tmen) building blocks bridged by tma anions give rise to chains with a zig-zag motif, which are cross-connected by Cu(3)(tmen)-tma polymers sharing metal ions Cu(2) through pendant tma carboxylates. The resulting 2D architecture extends in the crystallographic ab-plane. The adjacent sheets are embedded through the Cu(3)(tmen) tma chains, leaving H2O-filled channels. There are 6.5 lattice water molecules per formula unit, some of which are disordered. Upon heating, the lattice water molecules get eliminated without destroying the crystal morphology and the compound rehydrated reversibly on exposure to humid atmosphere. Magnetic data of the complex have been fitted considering isolated irregular Cu-3 triangles (three different J parameters) by applying the CLUMAG program. The best fit indicates three close comparable J parameters and very weak antiferromagnetic interactions are operative between the metal centers. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A combined computational and experimental polymorph search was undertaken to establish the crystal forms of 7-fluoroisatin, a simple molecule with no reported crystal structures, to evaluate the value of crystal structure prediction studies as an aid to solid form discovery. Three polymorphs were found in a manual crystallisation screen, as well as two solvates. Form I ( P2(1)/c, Z0 1), found from the majority of solvent evaporation experiments, corresponded to the most stable form in the computational search of Z0 1 structures. Form III ( P21/ a, Z0 2) is probably a metastable form, which was only found concomitantly with form I, and has the same dimeric R2 2( 8) hydrogen bonding motif as form I and the majority of the computed low energy structures. However, the most thermodynamically stable polymorph, form II ( P1 , Z0 2), has an expanded four molecule R 4 4( 18) hydrogen bonding motif, which could not have been found within the routine computational study. The computed relative energies of the three forms are not in accord with experimental results. Thus, the experimental finding of three crystalline polymorphs of 7- fluoroisatin illustrates the many challenges for computational screening to be a tool for the experimental crystal engineer, in contrast to the results for an analogous investigation of 5- fluoroisatin.