874 resultados para FREE FATTY-ACIDS
Resumo:
AMP-activated protein kinase (AMPK) is a major therapeutic target for the treatment of diabetes. We investigated the effect of a short-term overexpression of AMPK specifically in the liver by adenovirus-mediated transfer of a gene encoding a constitutively active form of AMPKalpha2 (AMPKalpha2-CA). Hepatic AMPKalpha2-CA expression significantly decreased blood glucose levels and gluconeogenic gene expression. Hepatic expression of AMPKalpha2-CA in streptozotocin-induced and ob/ob diabetic mice abolished hyperglycemia and decreased gluconeogenic gene expression. In normal mouse liver, AMPKalpha2-CA considerably decreased the refeeding-induced transcriptional activation of genes encoding proteins involved in glycolysis and lipogenesis and their upstream regulators, SREBP-1 (sterol regulatory element-binding protein-1) and ChREBP (carbohydrate response element-binding protein). This resulted in decreases in hepatic glycogen synthesis and circulating lipid levels. Surprisingly, despite the inhibition of hepatic lipogenesis, expression of AMPKalpha2-CA led to fatty liver due to the accumulation of lipids released from adipose tissue. The relative scarcity of glucose due to AMPKalpha2-CA expression led to an increase in hepatic fatty acid oxidation and ketone bodies production as an alternative source of energy for peripheral tissues. Thus, short-term AMPK activation in the liver reduces blood glucose levels and results in a switch from glucose to fatty acid utilization to supply energy needs.
Resumo:
Despite data favouring a role of dietary fat in colonic carcinogenesis, no study has focused on tissue n3 and n6 fatty acid (FA) status in human colon adenoma-carcinoma sequence. Thus, FA profile was measured in plasma phospholipids of patients with colorectal cancer (n = 22), sporadic adenoma (n = 27), and normal colon (n = 12) (control group). Additionally, mucosal FAs were assessed in both diseased and normal mucosa of cancer (n = 15) and adenoma (n = 21) patients, and from normal mucosa of controls (n = 8). There were no differences in FA profile of both plasma phospholipids and normal mucosa, between adenoma and control patients. There were considerable differences, however, in FAs between diseased and paired normal mucosa of adenoma patients, with increases of linoleic (p = 0.02), dihomogammalinolenic (p = 0.014), and eicosapentaenoic (p = 0.012) acids, and decreases of alpha linolenic (p = 0.001) and arachidonic (p = 0.02) acids in diseased mucosa. A stepwise reduction of eicosapentaenoic acid concentrations in diseased mucosa from benign adenoma to the most advanced colon cancer was seen (p = 0.009). Cancer patients showed lower alpha linolenate (p = 0.002) and higher dihomogammalinolenate (p = 0.003) in diseased than in paired normal mucosa. In conclusion changes in tissue n3 and n6 FA status might participate in the early phases of the human colorectal carcinogenesis.
Resumo:
Metabolites from intestinal microbiota are key determinants of host-microbe mutualism and, consequently, the health or disease of the intestinal tract. However, whether such host-microbe crosstalk influences inflammation in peripheral tissues, such as the lung, is poorly understood. We found that dietary fermentable fiber content changed the composition of the gut and lung microbiota, in particular by altering the ratio of Firmicutes to Bacteroidetes. The gut microbiota metabolized the fiber, consequently increasing the concentration of circulating short-chain fatty acids (SCFAs). Mice fed a high-fiber diet had increased circulating levels of SCFAs and were protected against allergic inflammation in the lung, whereas a low-fiber diet decreased levels of SCFAs and increased allergic airway disease. Treatment of mice with the SCFA propionate led to alterations in bone marrow hematopoiesis that were characterized by enhanced generation of macrophage and dendritic cell (DC) precursors and subsequent seeding of the lungs by DCs with high phagocytic capacity but an impaired ability to promote T helper type 2 (TH2) cell effector function. The effects of propionate on allergic inflammation were dependent on G protein-coupled receptor 41 (GPR41, also called free fatty acid receptor 3 or FFAR3), but not GPR43 (also called free fatty acid receptor 2 or FFAR2). Our results show that dietary fermentable fiber and SCFAs can shape the immunological environment in the lung and influence the severity of allergic inflammation.
Resumo:
Rats chronically cannulated in the carotid artery and the muscular branch of the femoral vein were subjected to a cold (4 °C) environment for up to 2 h. The changes in blood flow (measured with 46Sc microspheres) and arterio-venous differences in the concentrations of glucose, lactate, triacylglycerols and amino acids allowed the estimation of substrate (and energy) balances across the hindleg. Mean glucose uptake was 0.28mmol min21, mean lactate release was 0.33mmol min21 and the free fatty acid basal release of 0.31mmol min21 was practically zero upon exposure to the cold; the initial uptake of triacylglycerols gave place to a massive release following exposure. The measurement of PO·, PCO· and pH also allowed the estimation of oxygen, CO2 and bicarbonate balances and respiratory quotient changes across the hindleg. The contribution of amino acids to the energy balance of the hindleg was assumed to be low. These data were used to determine the sources of energy used to maintain muscle shivering with time. Three distinct phases were observed in hindleg substrate utilization. (1) The onset of shivering, with the use of glucose/glycogen and an increase in lactate efflux. Lipid oxidation was practically zero (respiratory quotient near 1), but the uptake of triacylglycerols from the blood remained unchanged. (2) A substrate-energy shift, with drastically decreased use of glucose/glycogen, and of lactate efflux; utilization of triacylglycerol as practically the sole source of energy (respiratory quotient approximately 0.7); decreasing uptake of triacylglycerol and increased tissue lipid mobilization. (3) The onset of a new heat-homeostasis setting for prolonged cold-exposure, with maintenance of muscle energy and heat production based on triacylglycerol utilization and efflux from the hindleg (muscle plus skin and subcutaneous adipose masses) contributing energy to help sustain heat production by the core organs and surrounding brown adipose tissue.
Resumo:
This study was undertaken in the framework of a larger European project dealing with the characterization of fat co- and by-products from the food chain, available for feed uses. In this study, we compare the effects, on the fatty acid (FA) and tocol composition of chicken and rabbit tissues, of the addition to feeds of a palm fatty acid distillate, very low in trans fatty acids (TFA), and two levels of the corresponding hydrogenated by-product, containing intermediate and high levels of TFA. Thus, the experimental design included three treatments, formulated for each species, containing the three levels of TFA defined above. Obviously, due to the use of hydrogenated fats, the levels of saturated fatty acids (SFA) show clear differences between the three dietary treatments. The results show that diets high in TFA (76 g/kg fat) compared with those low in TFA (4.4 g/kg fat) led to a lower content of tocopherols and tocotrienols in tissues, although these differences were not always statistically significant, and show a different pattern for rabbit and chicken. The TFA content in meat, liver and plasma increased from low-to-high TFA feeds in both chicken and rabbit. However, the transfer ratios from feed were not proportional to the TFA levels in feeds, reflecting certain differences according to the animal species. Moreover, feeds containing fats higher in TFA induced significant changes in tissue SFA, monounsaturated fatty acids and polyunsaturated fatty acids composition, but different patterns can be described for chicken and rabbit and for each type of tissue.
Resumo:
The addition of some fat co- and by-products to feeds is usual nowadays; however, the regulations of their use are not always clear and vary between countries. For instance, the use of recycled cooking oils is not allowed in the European Union, but they are used in other countries. However, oils recovered from industrial frying processes could show satisfactory quality for this purpose. Here we studied the effects of including oils recovered from the frying industry in rabbit and chicken feeds (at 30 and 60 g/kg, respectively) on the fatty acid (FA) and tocol (tocopherol + tocotrienol) compositon of meat, liver and plasma, and on their oxidative stability. Three dietary treatments (replicated eight times) were compared: fresh non-used oil (LOX); oil discarded from the frying industry, having a high content of secondary oxidation compounds (HOX); and an intermediate level (MOX) obtained by mixing 50 : 50 of LOX and HOX. The FA composition of oil diets and tissues was assessed by GC, their tocol content by HPLC, the thiobarbituric acid value was used to assess tissue oxidation status, and the ferrous oxidation-xylenol orange method was used to assess the susceptibility of tissues to oxidation. Our results indicate that FA composition of rabbit and chicken meat, liver and plasma was scarcely altered by the addition of recovered frying oils to feed. Differences were encountered in the FA composition between species, which might be attributed mainly to differences in the FA digestion, absorption and metabolism between species, and to some physiological dietary factors (i.e. coprophagy in rabbits that involves fermentation with FA structure modification). The α-tocopherol (αT) content of tissues was reduced in response to the lower αT content in the recovered frying oil. Differences in the content of other tocols were encountered between chickens and rabbits, which might be attributable to the different tocol composition of their feeds, as well as to species differences in the digestion and metabolism of tocols. Tissue oxidation and susceptibility to oxidation were in general low and were not greatly affected by the degree of oxidation of the oil added to the feeds. The relative content of polyunsaturated fatty acids/αT in these types of samples would explain the differences observed between species in the susceptibility of each tissue to oxidation. According to our results, oils recovered from the frying industry could be useful for feed uses.
Resumo:
The effects of infusion of a triglyceride emulsion (which induces peripheral insulin resistance) and amino acids (which stimulate gluconeogenesis) on glucose metabolism were investigated in healthy lean humans during exogenous infusion of glucose. One group of subjects (n = 5) was infused for 7.5 h with 11.1 mumol/kg/min glucose; during the last 4 h, amino acids were also infused at a rate of 3.33 mg/kg/min. A second group of subjects (n = 5) was infused with glucose+lipids (Lipovenös, 10% 10 ml/min) for 7.5 h and amino acids were added during the last 4 h. Infusion of lipids suppressed the increase in glucose oxidation observed during infusion of glucose alone (delta glucose oxidation: -2.1 +/- 1.1 vs. + 4.5 +/- 1.4 mumol/kg/min; P < 0.05) and during infusion of glucose+amino acids (delta glucose oxidation: + 1.6 +/- 1.4 vs. + 10.6 +/- 1.2 mumol/kg/min; P < 0.05). Gluconeogenesis (determined from 13C glucose synthesis during infusion of 13C bicarbonate) increased from 1.1 +/- 0.2 mumol/kg/min during infusion of glucose and 1.6 +/- 0.3 during infusion of glucose+lipids to 3.2 +/- 0.4 and 3.1 +/- 0.4, respectively, when amino acid infusion was superimposed (P < 0.05 in both instances). Plasma glucose concentrations were identical during infusion of glucose alone or glucose+amino acids, with or without lipids. Insulin concentrations were significantly increased by lipids both during infusion of glucose alone and of glucose+amino acids.(ABSTRACT TRUNCATED AT 250 WORDS)
Resumo:
Fructose is mainly consumed with added sugars (sucrose and high fructose corn syrup), and represents up to 10% of total energy intake in the US and in several European countries. This hexose is essentially metabolized in splanchnic tissues, where it is converted into glucose, glycogen, lactate, and, to a minor extent, fatty acids. In animal models, high fructose diets cause the development of obesity, insulin resistance, diabetes mellitus, and dyslipidemia. Ectopic lipid deposition in the liver is an early occurrence upon fructose exposure, and is tightly linked to hepatic insulin resistance. In humans, there is strong evidence, based on several intervention trials, that fructose overfeeding increases fasting and postprandial plasma triglyceride concentrations, which are related to stimulation of hepatic de novo lipogenesis and VLDL-TG secretion, together with decreased VLDL-TG clearance. However, in contrast to animal models, fructose intakes as high as 200 g/day in humans only modestly decreases hepatic insulin sensitivity, and has no effect on no whole body (muscle) insulin sensitivity. A possible explanation may be that insulin resistance and dysglycemia develop mostly in presence of sustained fructose exposures associated with changes in body composition. Such effects are observed with high daily fructose intakes, and there is no solid evidence that fructose, when consumed in moderate amounts, has deleterious effects. There is only limited information regarding the effects of fructose on intrahepatic lipid concentrations. In animal models, high fructose diets clearly stimulate hepatic de novo lipogenesis and cause hepatic steatosis. In addition, some observations suggest that fructose may trigger hepatic inflammation and stimulate the development of hepatic fibrosis. This raises the possibility that fructose may promote the progression of non-alcoholic fatty liver disease to its more severe forms, i.e. non-alcoholic steatohepatitis and cirrhosis. In humans, a short-term fructose overfeeding stimulates de novo lipogenesis and significantly increases intrahepatic fat concentration, without however reaching the proportion encountered in non-alcoholic fatty liver diseases. Whether consumption of lower amounts of fructose over prolonged periods may contribute to the pathogenesis of NAFLD has not been convincingly documented in epidemiological studies and remains to be further assessed.
Resumo:
The role of retinoic acids (RA) on liver fatty acid-binding protein (L-FABP) expression was investigated in the well differentiated FAO rat hepatoma cell line. 9-cis-Retinoic acid (9-cis-RA) specifically enhanced L-FABP mRNA levels in a time- and dose-dependent manner. The higher induction was found 6 h after addition of 10(-6) M 9-cis-RA in the medium. RA also enhanced further both L-FABP mRNA levels and cytosolic L-FABP protein content induced by oleic acid. The retinoid X receptor (RXR) and the peroxisome proliferator-activated receptor (PPAR), which are known to be activated, respectively, by 9-cis-RA and long chain fatty acid (LCFA), co-operated to bind specifically the peroxisome proliferator-responsive element (PPRE) found upstream of the L-FABP gene. Our result suggest that the PPAR-RXR complex is the molecular target by which 9-cis-RA and LCFA regulate the L-FABP gene.
Resumo:
The cellular response to fasting and starvation in tissues such as heart, skeletal muscle, and liver requires peroxisome proliferator-activated receptor-alpha (PPARalpha)-dependent up-regulation of energy metabolism toward fatty acid oxidation (FAO). PPARalpha null (PPARalphaKO) mice develop hyperinsulinemic hypoglycemia in the fasting state, and we previously showed that PPARalpha expression is increased in islets at low glucose. On this basis, we hypothesized that enhanced PPARalpha expression and FAO, via depletion of lipid-signaling molecule(s) for insulin exocytosis, are also involved in the normal adaptive response of the islet to fasting. Fasted PPARalphaKO mice compared with wild-type mice had supranormal ip glucose tolerance due to increased plasma insulin levels. Isolated islets from the PPARalpha null mice had a 44% reduction in FAO, normal glucose use and oxidation, and enhanced glucose-induced insulin secretion. In normal rats, fasting for 24 h increased islet PPARalpha, carnitine palmitoyltransferase 1, and uncoupling protein-2 mRNA expression by 60%, 62%, and 82%, respectively. The data are consistent with the view that PPARalpha, via transcriptionally up-regulating islet FAO, can reduce insulin secretion, and that this mechanism is involved in the normal physiological response of the pancreatic islet to fasting such that hypoglycemia is avoided.
Resumo:
Chronic inflammation and fatty acid deficiency, in particular in docosahexaenoic acid (DHA, C22:6-n3), occurring in cystic fibrosis patients, are two convincing arguments urging the use of polyunsaturated fatty acids (PUFA) omega-3 in this population. PUFA omega-3 oral dietary intake position in the cystic fibrosis treatment is however not clear despite many years of clinical research. This review article sets out the reasons that conduct nutritionists to try this approach and reviews the results published until nowadays.
Resumo:
Twenty-four-hour energy expenditure (24-EE), resting metabolic rate (RMR) and body composition were determined in 30 subjects from three groups; control (103 +/- 2% ideal body weight, n = 10), moderately obese (129 +/- 1% ideal body weight, n = 6), and obese (170 +/- 5% ideal body weight, n = 14) individuals. Twenty-four EE was measured in a comfortable airtight respiration chamber. When expressed as absolute values, both RMR and 24-EE were significantly increased in obese subjects when compared to normal weight subjects. The RMR was 7592 +/- 351 kJ/day in the obese, 6652 +/- 242 kJ/day in the moderately obese, and 6118 +/- 405 kJ/day in the controls. Mean 24-EE values were 10043 +/- 363, 9599 +/- 277, and 8439 +/- 432 kJ/day in the obese, moderately obese, and controls, respectively. The larger energy expenditure in the obese over 24 h was mainly due to a greater VO2 during the daylight hours. However, 92% of the larger 24-EE in the obese, compared to the control group, was accounted for by the higher RMR and only 8% by other factors such as the increased cost of moving the extra weight of the obese. The higher RMR and 24-EE in the obese was best related to the increased fat free mass.
Resumo:
The effects of diet on Longissimus muscle fatty acid composition was determined using 24 crossbred heifers of Simmental vs. Nelore and Limousin vs. Nelore. The experimental diets were: 1) corn and yeast (CY); 2) corn, cottonseed meal + meat and bones meal (CMB); 3) cassava hull and yeast (CHY); 4) cassava hull, cottonseed meal + meat and bones meal (CHMB). Feeding CHMB diets resulted in lower lipid and higher cholesterol contents (P<0.05) for both crosses. Most of the identified fatty acids were monounsaturated, and the highest percentage was found to oleic acid (C18:1w9), with values ranging from 32.54 to 46.42%. Among the saturated fatty acids the palmitic acid (C16:0) showed the highest percentage, with its contents ranging between 19.40 and 32.44%. The highest polyunsaturated/saturated fatty acid ratio was of 0.30, and the lowest was of 0.08. Feeding CY diets resulted in lower cholesterol and higher polyunsaturated fatty acid contents of the Longissimus muscle.